ترغب بنشر مسار تعليمي؟ اضغط هنا

Current constraints on deviations from General Relativity using binning in redshift and scale

125   0   0.0 ( 0 )
 نشر من قبل Mustapha Ishak
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We constrain deviations from general relativity (GR) including both redshift and scale dependencies in the modified gravity (MG) parameters. In particular, we employ the under-used binning approach and compare the results to functional forms. We use available datasets such as Cosmic Microwave Background (CMB) from Planck 2018, Baryonic Acoustic Oscillations (BAO) and Redshift Space Distortions (BAO/RSD) from the BOSS DR12, the 6DF Galaxy Survey, the SDSS DR7 Main Galaxy Sample, the correlation of Lyman-$alpha$ forest absorption and quasars from SDSS-DR14, Supernova Type Ia (SNe) from the Pantheon compilation, and DES Y1 data. Moreover, in order to maximize the constraining power from available datasets, we analyze MG models where we alternatively set some of the MG parameters to their GR values and vary the others. Using functional forms, we find an up to 3.5-$sigma$ tension with GR in $Sigma$ (while $mu$ is fixed) when using Planck+SNe+BAO+RSD; this goes away when lensing data is included, i.e. CMB lensing and DES (CMBL+DES). Using different binning methods, we find that a tension with GR above 2-$sigma$ in the (high-z, high-k) bin is persistent even when including CMBL+DES to Planck+SNe+BAO+RSD. Also, we find another tension above 2-$sigma$ in the (low-z, high-k) bin, but that can be reduced with the addition of lensing data. Furthermore, we perform a model comparison using the Deviance Information Criterion statistical tool and find that the MG model ($mu=1$, $Sigma$) is weakly favored by the data compared to $Lambda$CDM, except when DES data is included. Another noteworthy result is that we find that the binning methods do not agree with the widely-used functional parameterization where the MG parameters are proportional to $Omega_{text{DE}}(a)$, and this is clearly apparent in the high-z and high-k regime where this parameterization underestimates the deviations from GR.

قيم البحث

اقرأ أيضاً

We discuss the ability of the planned Euclid mission to detect deviations from General Relativity using its extensive redshift survey of more than 50 Million galaxies. Constraints on the gravity theory are placed measuring the growth rate of structur e within 14 redshift bins between z=0.7 and z=2. The growth rate is measured from redshift-space distortions, i.e. the anisotropy of the clustering pattern induced by coherent peculiar motions. This is performed in the overall context of the Euclid spectroscopic survey, which will simultaneously measure the expansion history of the universe, using the power spectrum and its baryonic features as a standard ruler, accounting for the relative degeneracies of expansion and growth parameters. The resulting expected errors on the growth rate in the different redshift bins, expressed through the quantity fsigma_8, range between 1.3% and 4.4%. We discuss the optimisation of the survey configuration and investigate the important dependence on the growth parameterisation and the assumed cosmological model. We show how a specific parameterisation could actually drive the design towards artificially restricted regions of the parameter space. Finally, in the framework of the popular gamma -parameterisation, we show that the Euclid spectroscopic survey alone will already be able to provide substantial evidence (in Bayesian terms) if the growth index differs from the GR value gamma=0.55 by at least sim 0.13. This will combine with the comparable inference power provided by the Euclid weak lensing survey, resulting in Euclids unique ability to provide a decisive test of modified gravity.
177 - Gong-Bo Zhao 2010
We test General Relativity (GR) using current cosmological data: the cosmic microwave background (CMB) from WMAP5 (Komatsu et al. 2009), the integrated Sachs-Wolfe (ISW) effect from the cross-correlation of the CMB with six galaxy catalogs (Giannanto nio et al. 2008), a compilation of supernovae Type Ia (SNe) including the latest SDSS SNe (Kessler et al. 2009), and part of the weak lensing (WL) data from CFHTLS (Fu et al. 2008, Kilbinger et al. 2009) that probe linear and mildly non-linear scales. We first test a model where the effective Newtons constant, mu, and the ratio of the two gravitational potentials, eta, transit from the GR value to another constant at late times; in this case, we find that standard GR is fully consistent with the combined data. The strongest constraint comes from the ISW effect which would arise from this gravitational transition; the observed ISW signal imposes a tight constraint on a combination of mu and eta that characterizes the lensing potential. Next, we consider four pixels in time and space for each function mu and eta, and perform a Principal Component Analysis (PCA) finding that seven of the resulting eight eigenmodes are consistent with GR within the errors. Only one eigenmode shows a 2-sigma deviation from the GR prediction, which is likely to be due to a systematic effect. However, the detection of such a deviation demonstrates the power of our time- and scale-dependent PCA methodology when combining observations of structure formation and expansion history to test GR.
Nowadays, thanks to the improved precision of cosmological data, it has been possible to search for deviation from the general relativity theory with tests on large cosmic scales. Particularly, there is a class of modified gravity theories that break s the Einstein equivalence principle (EEP) in the electromagnetic sector, generating variations of the fine structure constant, violations of the cosmic distance duality relation and the evolution law of the cosmic microwave background (CMB) radiation. In recent papers, this class of theories has been tested with angular diameter distances from galaxy clusters, type Ia supernovae and CMB temperature. In this work we propose a new test by considering the most recent X-ray surface brightness observations of galaxy clusters jointly with type Ia supernovae and CMB temperature. {The crucial point here is that we take into account the dependence of the X-ray gas mass fraction of galaxy clusters on possible variations of the fine structure constant and violations of the cosmic distance duality relation.} Our basic result is that this new approach is competitive with the previous one and it also does not show significant deviations from the general relativity.
Although general relativity (GR) has been precisely tested at the solar system scale, precise tests at a galactic or cosmological scale are still relatively insufficient. Here, in order to test GR at the galactic scale, we use the newly compiled gala xy-scale strong gravitational lensing (SGL) sample to constrain the parameter $gamma_{PPN}$ in the parametrized post-Newtonian (PPN) formalism. We employ the Pantheon sample of type Ia supernovae observation to calibrate the distances in the SGL systems using the Gaussian Process method, which avoids the logical problem caused by assuming a cosmological model within GR to determine the distances in the SGL sample. Furthermore, we consider three typical lens models in this work to investigate the influences of the lens mass distributions on the fitting results. We find that the choice of the lens models has a significant impact on the constraints on the PPN parameter $gamma_{PPN}$. We use the Bayesian information criterion as an evaluation tool to make a comparison for the fitting results of the three lens models, and we find that the most reliable lens model gives the result of $gamma_{PPN}=1.065^{+0.064}_{-0.074}$, which is in good agreement with the prediction of $gamma_{PPN}=1$ by GR. As far as we know, our 6.4% constraint result is the best result so far among the recent works using the SGL method.
We use large-scale cosmological observations to place constraints on the dark-matter pressure, sound speed and viscosity, and infer a limit on the mass of warm-dark-matter particles. Measurements of the cosmic microwave background (CMB) anisotropies constrain the equation of state and sound speed of the dark matter at last scattering at the per mille level. Since the redshifting of collisionless particles universally implies that these quantities scale like $a^{-2}$ absent shell crossing, we infer that today $w_{rm (DM)}< 10^{-10.0}$, $c_{rm s,(DM)}^2 < 10^{-10.7}$ and $c_{rm vis, (DM)}^{2} < 10^{-10.3}$ at the $99%$ confidence level. This very general bound can be translated to model-dependent constraints on dark-matter models: for warm dark matter these constraints imply $m> 70$ eV, assuming it decoupled while relativistic around the same time as the neutrinos; for a cold relic, we show that $m>100$ eV. We separately constrain the properties of the DM fluid on linear scales at late times, and find upper bounds $c_{rm s, (DM)}^2<10^{-5.9}$, $c_{rm vis, (DM)}^{2} < 10^{-5.7}$, with no detection of non-dust properties for the DM.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا