ترغب بنشر مسار تعليمي؟ اضغط هنا

Effect of deep-defect excitation on mechanical energy dissipation of single-crystal diamond

95   0   0.0 ( 0 )
 نشر من قبل Sun Huanying
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The ultra-wide bandgap of diamond distinguishes it from other semiconductors, in that all known defects have deep energy levels that are inactive at room temperature. Here, we present the effect of deep defects on the mechanical energy dissipation of single-crystal diamond experimentally and theoretically up to 973 K. Energy dissipation is found to increase with temperature and exhibits local maxima due to the interaction between phonons and deep defects activated at specific temperatures. A two-level model with deep energies is proposed to well explain the energy dissipation at elevated temperatures. It is evident that the removal of boron impurities can substantially increase the quality factor of room-temperature diamond mechanical resonators. The deep-energy nature of nitrogen bestows single-crystal diamond with outstanding low-intrinsic energy dissipation in mechanical resonators at room temperature or above.

قيم البحث

اقرأ أيضاً

102 - K. Bray , H. Kato , R. Previdi 2017
Single crystal, nanoscale diamond membranes are highly sought after for a variety of applications including nanophotonics, nanoelectronics and quantum information science. However, so far, the availability of conductive diamond membranes remained an unreachable goal. In this work we present a complete nanofabrication methodology for engineering high aspect ratio, electrically active single crystal diamond membranes. The membranes have large lateral directions, exceeding 500x500 um2 and are only several hundreds of nanometers thick. We further realize vertical single crystal p-n junctions, made from the diamond membranes that exhibit onset voltages of ~ 10V and a current of several mA. Moreover, we deterministically introduce optically active color centers into the membranes, and demonstrate for the first time a single crystal nanoscale diamond LED. The robust and scalable approach to engineer the electrically active single crystal diamond membranes, offers new pathways for advanced nanophotonics, nanoelectronics and optomechanics devices employing diamond.
Single-crystal diamond cavity optomechanical devices are a promising example of a hybrid quantum system: by coupling mechanical resonances to both light and electron spins, they can enable new ways for photons to control solid state qubits. However, realizing cavity optomechanical devices from high quality diamond chips has been an outstanding challenge. Here we demonstrate single-crystal diamond cavity optomechanical devices that can enable photon-phonon-spin coupling. Cavity optomechanical coupling to $2,text{GHz}$ frequency ($f_text{m}$) mechanical resonances is observed. In room temperature ambient conditions, these resonances have a record combination of low dissipation (mechanical quality factor, $Q_text{m} > 9000$) and high frequency, with $Q_text{m}cdot f_text{m} sim 1.9times10^{13}$ sufficient for room temperature single phonon coherence. The system exhibits high optical quality factor ($Q_text{o} > 10^4$) resonances at infrared and visible wavelengths, is nearly sideband resolved, and exhibits optomechanical cooperativity $Csim 3$. The devices potential for optomechanical control of diamond electron spins is demonstrated through radiation pressure excitation of mechanical self-oscillations whose 31 pm amplitude is predicted to provide 0.6 MHz coupling rates to diamond nitrogen vacancy center ground state transitions (6 Hz / phonon), and $sim10^5$ stronger coupling rates to excited state transitions.
With the best overall electronic and thermal properties, single-crystal diamond (SCD) is the extreme wide bandgap material that is expected to revolutionize power electronics and radio-frequency electronics in the future. However, turning SCD into us eful semiconductors faces doping challenges, as conventional substitutional doping techniques, such as thermal diffusion and ion-implantation, are not easily applicable to SCD. Here we report a simple and easily accessible doping strategy demonstrating that electrically activated, substitutional boron doping in natural SCD without any phase transitions or lattice damage which can be readily realized with thermal diffusion at relatively low temperature. For the boron doping, we employ a unique dopant carrying medium: heavily doped Si nanomembranes. We further demonstrate selectively doped high-voltage diodes and half-wave rectifier circuits using such doped SCD. Our new doping strategy has established a reachable path toward using SCDs for future high-voltage power conversion systems and for other novel diamond-based electronics.
Many promising applications of single crystal diamond and its color centers as sensor platform and in photonics require free-standing membranes with a thickness ranging from several micrometers to the few 100 nm range. In this work, we present an app roach to conveniently fabricate such thin membranes with up to about one millimeter in size. We use commercially available diamond plates (thickness 50 $mu$m) in an inductively coupled reactive ion etching process which is based on argon, oxygen and SF$_6$. We thus avoid using toxic, corrosive feed gases and add an alternative to previously presented recipes involving chlorine-based etching steps. Our membranes are smooth (RMS roughness <1 nm) and show moderate thickness variation (central part: <1 $mu$m over $approx ,$200x200 $mu$m$^2$). Due to an improved etch mask geometry, our membranes stay reliably attached to the diamond plate in our chlorine-based as well as SF$_6$-based processes. Our results thus open the route towards higher reliability in diamond device fabrication and up-scaling.
Triply Periodic Minimal Surfaces (TPMS) possess locally minimized surface area under the constraint of periodic boundary conditions. Different families of surfaces were obtained with different topologies satisfying such conditions. Examples of such f amilies include Primitive (P), Gyroid (G) and Diamond (D) surfaces. From a purely mathematical subject, TPMS have been recently found in materials science as optimal geometries for structural applications. Proposed by Mackay and Terrones in 1991, schwarzites are 3D crystalline porous carbon nanocrystals exhibiting the shape of TPMS. Although their complex topology poses serious limitations on their synthesis with conventional nanoscale fabrication methods, such as Chemical Vapour Deposition (CVD), TPMS can be fabricated by Additive Manufacturing (AM) techniques, such as 3D Printing. In this work, we used an optimized atomic model of a schwarzite structure from the D family (D8bal) to generate a surface mesh that was subsequently used for 3D-printing through Fused Deposition Modelling (FDM). This D schwarzite was 3D-printed with thermoplastic PolyLactic Acid (PLA) polymer filaments. Mechanical properties under uniaxial compression were investigated for both the atomic model and the 3D-printed one. Fully atomistic Molecular Dynamics (MD) simulations were also carried out to investigate the uniaxial compression behavior of the D8bal atomic model. Mechanical testings were performed on the 3D-printed schwarzite where the deformation mechanisms were found to be similar to those observed in MD simulations. These results are suggestive of a scale-independent mechanical behavior that is dominated by structural topology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا