ﻻ يوجد ملخص باللغة العربية
We present an optimized algorithm calculating determinant for multivariate polynomial matrix on GPU. The novel algorithm provides precise determinant for input multivariate polynomial matrix in controllable time. Our approach is based on modular methods and split into Fast Fourier Transformation, Condensation method and Chinese Remainder Theorem where each algorithm is paralleled on GPU. The experiment results show that our parallel method owns substantial speedups compared to Maple, allowing memory overhead and time expedition in steady increment. We are also able to deal with complex matrix which is over the threshold on Maple and constrained on CPU. In addition, calculation during the process could be recovered without losing accuracy at any point regardless of disruptions. Furthermore, we propose a time prediction for calculation of polynomial determinant according to some basic matrix attributes and we solve an open problem relating to harmonic elimination equations on the basis of our GPU implementation.
In this paper, we study how to quickly compute the <-minimal monomial interpolating basis for a multivariate polynomial interpolation problem. We address the notion of reverse reduced basis of linearly independent polynomials and design an algorithm
Gauss-Seidel (GS) relaxation is often employed as a preconditioner for a Krylov solver or as a smoother for Algebraic Multigrid (AMG). However, the requisite sparse triangular solve is difficult to parallelize on many-core architectures such as graph
For $m,n in mathbb{N}$, $mgeq 1$ and a given function $f : mathbb{R}^mlongrightarrow mathbb{R}$ the polynomial interpolation problem (PIP) is to determine a emph{generic node set} $P subseteq mathbb{R}^m$ and the coefficients of the uniquely defined
The linear equations that arise in interior methods for constrained optimization are sparse symmetric indefinite and become extremely ill-conditioned as the interior method converges. These linear systems present a challenge for existing solver frame
We investigate multivariate integration for a space of infinitely times differentiable functions $mathcal{F}_{s, boldsymbol{u}} := {f in C^infty [0,1]^s mid | f |_{mathcal{F}_{s, boldsymbol{u}}} < infty }$, where $| f |_{mathcal{F}_{s, boldsymbol{u}}