ترغب بنشر مسار تعليمي؟ اضغط هنا

Does the magnetic field suppress fragmentation in massive dense cores?

136   0   0.0 ( 0 )
 نشر من قبل Aina Palau
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Theoretical and numerical works indicate that a strong magnetic field should suppress fragmentation in dense cores. However, this has never been tested observationally in a relatively large sample of fragmenting massive dense cores. Here we use the polarization data obtained in the Submillimeter Array Legacy Survey of Zhang et al. to build a sample of 18 massive dense cores where both fragmentation and magnetic field properties are studied in a uniform way. We measured the fragmentation level, Nmm, within the field of view common to all regions, of 0.15 pc, with a mass sensitivity of about 0.5 Msun, and a spatial resolution of about 1000 au. In order to obtain the magnetic field strength using the Davis-Chandrasekhar-Fermi method, we estimated the dispersion of the polarization position angles, the velocity dispersion of the H13CO+(4-3) gas, and the density of each core, all averaged within 0.15 pc. A strong correlation is found between Nmm and the average density of the parental core, although with significant scatter. When large-scale systematic motions are separated from the velocity dispersion and only the small-scale (turbulent) contribution is taken into account, a tentative correlation is found between Nmm and the mass-to-flux ratio, as suggested by numerical and theoretical works.

قيم البحث

اقرأ أيضاً

We present Plateau de Bure interferometer observations obtained in continuum at 1.3 and 3.5 mm towards the six most massive and young (IR-quiet) dense cores in Cygnus X. Located at only 1.7 kpc, the Cygnus X region offers the opportunity of reaching small enough scales (of the order of 1700 AU at 1.3 mm) to separate individual collapsing objects. The cores are sub-fragmented with a total of 23 fragments inside 5 cores. Only the most compact core, CygX-N63, could actually be a single massive protostar with an envelope mass as large as 60 Msun. The fragments in the other cores have sizes and separations similar to low-mass pre-stellar and proto-stellar condensations in nearby protoclusters, and are probably of the same nature. A total of 9 out of these 23 protostellar objects are found to be probable precursors of OB stars with envelope masses ranging from 6 to 23 Msun. The level of fragmentation is globally higher than in the turbulence regulated, monolithic collapse scenario, but is not as high as expected in a pure gravo-turbulent scenario where the distribution of mass is dominated by low-mass protostars/stars. Here, the fractions of the total core masses in the high-mass fragments are reaching values as high as 28, 44, and 100 % in CygX-N12, CygX-N53, and CygX-N63, respectively, much higher than what an IMF-like mass distribution would predict. The increase of the fragmentation efficiency as a function of density in the cores is proposed to be due to the increasing importance of self-gravity leading to gravitational collapse at the scale of the dense cores. At the same time, the cores tend to fragment into a few massive protostars within their central regions. We are therefore probably witnessing here the primordial mass segregation of clusters in formation.
We develop a new core field structure (CFS) model to predict the magnetic field strength and magnetic field fluctuation profile of dense cores using gas kinematics. We use spatially resolved observations of the nonthermal velocity dispersion from the Green Bank Ammonia survey along with column density maps from SCUBA-2 to estimate the magnetic field strength across seven dense cores located in the L1688 region of Ophiuchus. The CFS model predicts the profile of the relative field fluctuation, which is related to the observable dispersion in direction of the polarization vectors. Within the context of our model we find that all the cores have a transcritical mass-to-flux ratio.
Massive stars, multiple stellar systems and clusters are born from the gravitational collapse of massive dense gaseous clumps, and the way these systems form strongly depends on how the parent clump fragments into cores during collapse. Numerical sim ulations show that magnetic fields may be the key ingredient in regulating fragmentation. Here we present ALMA observations at ~0.25 resolution of the thermal dust continuum emission at ~278 GHz towards a turbulent, dense, and massive clump, IRAS 16061-5048c1, in a very early evolutionary stage. The ALMA image shows that the clump has fragmented into many cores along a filamentary structure. We find that the number, the total mass and the spatial distribution of the fragments are consistent with fragmentation dominated by a strong magnetic field. Our observations support the theoretical prediction that the magnetic field plays a dominant role in the fragmentation process of massive turbulent clump.
The role played by magnetic field during star formation is an important topic in astrophysics. We investigate the correlation between the orientation of star-forming cores (as defined by the core major axes) and ambient magnetic field directions in 1 ) a 3D MHD simulation, 2) synthetic observations generated from the simulation at different viewing angles, and 3) observations of nearby molecular clouds. We find that the results on relative alignment between cores and background magnetic field in synthetic observations slightly disagree with those measured in fully 3D simulation data, which is partly because cores identified in projected 2D maps tend to coexist within filamentary structures, while 3D cores are generally more rounded. In addition, we examine the progression of magnetic field from pc- to core-scale in the simulation, which is consistent with the anisotropic core formation model that gas preferably flow along the magnetic field toward dense cores. When comparing the observed cores identified from the GBT Ammonia Survey (GAS) and Planck polarization-inferred magnetic field orientations, we find that the relative core-field alignment has a regional dependence among different clouds. More specifically, we find that dense cores in the Taurus molecular cloud tend to align perpendicular to the background magnetic field, while those in Perseus and Ophiuchus tend to have random (Perseus) or slightly parallel (Ophiuchus) orientations with respect to the field. We argue that this feature of relative core-field orientation could be used to probe the relative significance of the magnetic field within the cloud.
We compare the directions of molecular outflows of 62 low-mass Class 0 and I protostars in nearby (<450 pc) star-forming regions with the mean orientations of the magnetic fields on 0.05-0.5 pc scales in the dense cores/clumps where they are embedded . The magnetic field orientations were measured using the JCMT POL-2 data taken by the BISTRO-1 survey and from the archive. The outflow directions were observed with interferometers in the literature. The observed distribution of the angles between the outflows and the magnetic fields peaks between 15 and 35 degrees. After considering projection effects, our results could suggest that the outflows tend to be misaligned with the magnetic fields by 50+/-15 degrees in three-dimensional space and are less likely (but not ruled out) randomly oriented with respect to the magnetic fields. There is no correlation between the misalignment and the bolometric temperatures in our sample. In several sources, the small-scale (1000-3000 au) magnetic fields is more misaligned with the outflows than their large-scale magnetic fields, suggesting that the small-scale magnetic field has been twisted by the dynamics. In comparison with turbulent MHD simulations of core formation, our observational results are more consistent with models in which the energy densities in the magnetic field and the turbulence of the gas are comparable. Our results also suggest that the misalignment alone cannot sufficiently reduce the efficiency of magnetic braking to enable formation of the observed number of large Keplerian disks with sizes larger than 30-50 au.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا