ﻻ يوجد ملخص باللغة العربية
Modern deep neural network models are large and computationally intensive. One typical solution to this issue is model pruning. However, most current pruning algorithms depend on hand crafted rules or domain expertise. To overcome this problem, we propose a learning based auto pruning algorithm for deep neural network, which is inspired by recent automatic machine learning(AutoML). A two objectives problem that aims for the the weights and the best channels for each layer is first formulated. An alternative optimization approach is then proposed to derive the optimal channel numbers and weights simultaneously. In the process of pruning, we utilize a searchable hyperparameter, remaining ratio, to denote the number of channels in each convolution layer, and then a dynamic masking process is proposed to describe the corresponding channel evolution. To control the trade-off between the accuracy of a model and the pruning ratio of floating point operations, a novel loss function is further introduced. Preliminary experimental results on benchmark datasets demonstrate that our scheme achieves competitive results for neural network pruning.
In recent years, deep neural networks have achieved great success in the field of computer vision. However, it is still a big challenge to deploy these deep models on resource-constrained embedded devices such as mobile robots, smart phones and so on
Recent studies have shown that deep neural networks (DNN) are vulnerable to adversarial samples: maliciously-perturbed samples crafted to yield incorrect model outputs. Such attacks can severely undermine DNN systems, particularly in security-sensiti
Face de-identification algorithms have been developed in response to the prevalent use of public video recordings and surveillance cameras. Here, we evaluated the success of identity masking in the context of monitoring drivers as they actively opera
Recent years have witnessed the significant progress on convolutional neural networks (CNNs) in dynamic scene deblurring. While CNN models are generally learned by the reconstruction loss defined on training data, incorporating suitable image priors
Channel pruning is a promising technique to compress the parameters of deep convolutional neural networks(DCNN) and to speed up the inference. This paper aims to address the long-standing inefficiency of channel pruning. Most channel pruning methods