ﻻ يوجد ملخص باللغة العربية
Sixty five Planck Galactic cold clumps (PGCCs) from the first quadrant (IQuad) and thirty nine of PGCCs from the Anti-Center direction region (ACent) were observed in $^{12}$CO, $^{13}$CO and C$^{18}$O J=1-0 lines using the PMO 13.7-m telescope. All the targets were detected with all the three lines, except for 12 IQuad and 8 ACent PGCCs without C$^{18}$O detection. Seventy six and 49 velocity components were obtained in IQuad and ACent respectively. One-hundred and forty-six cores were extracted from 76 IQuad clumps and 100 cores from 49 ACent clumps. The average T$_{mathrm{ex}}$ of IQuad cores and ACent cores are 12.4 K and 12.1 K, respectively. The average line width of $^{13}$CO of IQuad cores and ACent cores are 1.55 km s$^{-1}$ and 1.77 km s$^{-1}$, respectively. Among the detected cores, 24 in IQuad and 13 in ACent have asymmetric line profiles. The small blue excesses, $sim$0.03 in IQuad and 0.01 in ACent, indicate that the star formation is not active in these PGCC cores. Power-law fittings of core mass function to the high mass end give indexes of -0.57 in IQuad and -1.02 in ACent which are flatter than the slope of initial mass function given by citeauthor{1955ApJ...121..161S}. The large turnover masses with value of 28 M$_{odot}$ for IQuad cores and 77 M$_{odot}$ for ACent cores suggest low star formation efficiencies in PGCCs. The correlation between virial mass and gas mass indicates that most of PGCC cores in both regions are not likely pressure-confined.
We present the Planck Catalogue of Galactic Cold Clumps (PGCC), an all-sky catalogue of Galactic cold clump candidates detected by Planck. This catalogue is the full version of the Early Cold Core (ECC) catalogue, which was made available in 2011 wit
Planck Galactic Cold Clumps (PGCCs) possibly represent the early stages of star formation. To understand better the properties of PGCCs, we studied 16 PGCCs in the L1495 cloud with molecular lines and continuum data from Herschel, JCMT/SCUBA-2 and th
We present a pilot HI survey of 17 Planck Galactic Cold Clumps (PGCCs) with the Five-hundred-meter Aperture Spherical radio Telescope (FAST). HI Narrow Self-Absorption (HINSA) is an effective method to detect cold HI being mixed with molecular hydrog
(abridged) We perform a detailed investigation of sources from the Cold Cores Catalogue of Planck Objects (C3PO). Our goal is to probe the reliability of the detections, validate the separation between warm and cold dust emission components, provide
Gas at high Galactic latitude is a relatively little-noticed component of the interstellar medium. In an effort to address this, forty-one Planck Galactic Cold Clumps at high Galactic latitude (HGal; $|b|>25^{circ}$) were observed in $^{12}$CO, $^{13