ترغب بنشر مسار تعليمي؟ اضغط هنا

Preliminary Target Selection for the DESI Emission Line Galaxy (ELG) Sample

148   0   0.0 ( 0 )
 نشر من قبل Anand Raichoor
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

DESI will precisely constrain cosmic expansion and the growth of structure by collecting $sim$35 million redshifts across $sim$80% of cosmic history and one third of the sky to study Baryon Acoustic Oscillations (BAO) and Redshift Space Distortions (RSD). We present a preliminary target selection for an Emission Line Galaxy (ELG) sample, which will comprise about half of all DESI tracers. The selection consists of a $g$-band magnitude cut and a $(g-r)$ vs. $(r-z)$ color box, which we validate using HSC/PDR2 photometric redshifts and DEEP2 spectroscopy. The ELG target density should be $sim$2400 deg$^{-2}$, with $sim$65% of ELG redshifts reliably within a redshift range of $0.6<z<1.6$. ELG targeting for DESI will be finalized during a `Survey Validation phase.



قيم البحث

اقرأ أيضاً

The DESI survey will observe more than 8 million candidate luminous red galaxies (LRGs) in the redshift range $0.3<z<1.0$. Here we present a preliminary version of the DESI LRG target selection developed using Legacy Surveys Data Release 8 $g$, $r$, $z$ and $W1$ photometry. This selection yields a sample with a uniform surface density of ${sim},600$ deg$^{-2}$and very low predicted stellar contamination and redshift failure rates. During DESI Survey Validation, updat
The DESI survey will measure large-scale structure using quasars as direct tracers of dark matter in the redshift range $0.9<z<2.1$ and using quasar Ly-$alpha$ forests at $z>2.1$. We present two methods to select candidate quasars for DESI based on i maging in three optical ($g, r, z$) and two infrared ($W1, W2$) bands. The first method uses traditional color cuts and the second utilizes a machine-learning algorithm.
The Dark Energy Spectroscopic Instrument (DESI) will execute a nearly magnitude-limited survey of low redshift galaxies ($0.05 leq z leq 0.4$, median $z approx 0.2$). Clustering analyses of this Bright Galaxy Survey (BGS) will yield the most precise measurements to date of baryon acoustic oscillations and redshift-space distortions at low redshift. DESI BGS will comprise two target classes: (i) BRIGHT ($r<19.5$~mag), and (ii) FAINT ($19.5<r<20$~mag). Here we present a summary of the star-galaxy separation, and different photometric and geometrical masks, used in BGS to reduce the number of spurious targets. The selection results in a total density of $sim 800$ objects/deg$^2$ for the BRIGHT and $sim 600$ objects/deg$^2$ for the FAINT selections.A full characterization of the BGS selection can be found in Ruiz-Macias et al. (2020).
The DESI Milky Way Survey (MWS) will observe $ge$8 million stars between $16 < r < 19$ mag, supplemented by observations of brighter targets under poor observing conditions. The survey will permit an accurate determination of stellar kinematics and p opulation gradients; characterize diffuse substructure in the thick disk and stellar halo; enable the discovery of extremely metal-poor stars and other rare stellar types; and improve constraints on the Galaxys 3D dark matter distribution from halo star kinematics. MWS will also enable a detailed characterization of the stellar populations within 100 pc of the Sun, including a complete census of white dwarfs. The target catalog from the preliminary selection described here is public.
We describe the algorithm used to select the Emission Line Galaxy (ELG) sample at $z sim 0.85$ for the extended Baryon Oscillation Spectroscopic Survey of the Sloan Digital Sky Survey IV, using photometric data from the DECam Legacy Survey. Our selec tion is based on a selection box in the $g-r$ vs. $r-z$ colour-colour space and a cut on the $g$-band magnitude, to favour galaxies in the desired redshift range with strong [OII] emission. It provides a target density of 200 deg$^{-2}$ on the North Galactic Cap (NGC) and of 240 deg$^{-2}$ on the South Galactic Cap (SGC), where we use a larger selection box because of deeper imaging. We demonstrate that this selection passes the eBOSS requirements in terms of homogeneity. About 50,000 ELGs have been observed since the observations have started in 2016, September. These roughly match the expected redshift distribution, though the measured efficiency is slightly lower than expected. The efficiency can be increased by enlarging the redshift range and with incoming pipeline improvement. The cosmological forecast based on these first data predict $sigma_{D_V}/D_V = 0.023$, in agreement with previous forecasts. Lastly, we present the stellar population properties of the ELG SGC sample. Once observations are completed, this sample will be suited to provide a cosmological analysis at $z sim 0.85$, and will pave the way for the next decade of massive spectroscopic cosmological surveys, which heavily rely on ELGs. The target catalogue over the SGC will be released along with DR14.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا