ﻻ يوجد ملخص باللغة العربية
Element diffusion is a key physical process that substantially impacts the superficial abundances, internal structure, pulsation properties, and evolution of white dwarfs. We study the effect of Coulomb separation of ions in the cooling times of evolving white dwarfs, their chemical profiles, the Brunt-Vaisala (buoyancy) frequency, and the pulsational periods at the ZZ Ceti instability strip. We follow the full evolution of white-dwarf models derived from their progenitor history on the basis of a time-dependent element diffusion scheme that incorporates the effect of gravitational settling of ions due to Coulomb interactions at high densities. We find that Coulomb sedimentation profoundly alters the chemical profiles of ultra-massive ($M_*> 1 M_{sun}$) white dwarfs along their evolution, preventing helium from diffusing inward toward the core, and thus leading to much narrower chemical transition zones. As a result, significant changes in the $g$-mode pulsation periods as high as $15 %$ are expected for ultra-massive ZZ Ceti stars. This should be taken into account in detailed asteroseismological analyses of such stars. For less-massive white dwarfs, the impact of Coulomb separation is much less noticeable, inflicting period changes in ZZ Ceti stars that are below the period changes that result from uncertainties in progenitor evolution, albeit larger than typical uncertainties of observed periods.
Because of the large neutron excess of $^{22}$Ne, this isotope rapidly sediments in the interior of the white dwarfs. This process releases an additional amount of energy, thus delaying the cooling times of the white dwarf. This influences the ages o
The importance to stellar evolution of understanding the metal abundances in hot white dwarfs is well known. Previous work has found the hot DA white dwarfs REJ 1032+532, REJ 1614-085 and GD 659 to have highly abundant, stratified photospheric nitrog
We present 16 new, and confirm 7 previously identified, DA white dwarfs in the Kepler field through ground-based spectroscopy with the Hale 200, Kitt Peak 4-meter, and Bok 2.3-meter telescopes. Using atmospheric models we determine their effective te
(Abridged abstract) We explore the formation of ultra-massive (M_{rm WD} gtrsim 1.05 M_sun$), carbon-oxygen core white dwarfs resulting from single stellar evolution. We also study their evolutionary and pulsational properties and compare them with t
We have analysed a sample of 23 hot DAs to better understand the source of the circumstellar features reported in previous work. Unambiguous detections of circumstellar material are again made at eight stars. The velocities of the circumstellar mater