ترغب بنشر مسار تعليمي؟ اضغط هنا

Rydberg Excitons in Synthetic Cuprous Oxide (Cu$_2$O)

102   0   0.0 ( 0 )
 نشر من قبل Stephen Lynch
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High-lying Rydberg states of Mott-Wannier excitons are receiving considerable interest due to the possibility of adding long-range interactions to the physics of exciton-polaritons. Here, we study Rydberg excitation in bulk synthetic cuprous oxide grown by the optical float zone technique and compare the result with natural samples. X-ray characterization confirms both materials are mostly single crystal, and mid-infrared transmission spectroscopy revealed little difference between synthetic and natural material. The synthetic samples show principal quantum numbers up to $n=10$, exhibit additional absorption lines, plus enhanced spatial broadening and spatial inhomogeneity. Room temperature and cryogenic photoluminescence measurements reveal a significant excess of copper vacancies in the synthetic material. These measurements provide a route towards achieving mbox{high-$n$} excitons in synthetic crystals, opening a route to scalable quantum devices.

قيم البحث

اقرأ أيضاً

Phonons are produced when an excited vacancy in cuprous oxide (Cu$_2$O) relaxes. Time resolved luminescence was used to find the excited copper vacancy (acceptor) and oxygen vacancy (donor) trap levels and lifetimes. It was also used to determine the typical energy and number of phonons in the phonon pulses emitted by vacancies. The vacancy properties of cuprous oxide are controlled by several synthesis parameters and by the temperature. We directly demonstrate the absorption of light by oxygen vacancies with transient absorption. Copper and oxygen vacancies behave differently, in part because the two kinds of traps capture carriers from different states. For example, the copper vacancy luminescence lifetime is around 25 times greater at low temperature. However, both kinds of vacancy luminescence are consistent with a Poissonian multiple phonon emission model.
We investigate quantum many-body effects on Rydberg excitons in cuprous oxide induced by the surrounding electron-hole plasma. Line shifts and widths are calculated by full diagonalisation of the plasma Hamiltonian and compared to results in first or der perturbation theory, and the oscillator strength of the exciton lines is analysed.
We develop a many-body approach to the behavior of exciton bound states and the conduction electron band edge in a surrounding electron-hole plasma with a focus on the absorption spectrum of Rydberg excitons in cuprous oxide. The interplay of band ed ge and exciton levels is analyzed numerically, whereby the self-consistent solution is compared to the semiclassical Debye approximation. Our results provide criteria which allow to verify or rule out the different band edge models against future experimental data.
We report measurements of the attenuation of a beam of orthoexciton-polaritons by a photoionizing optical probe. Excitons were prepared in a narrow resonance by two photon absorption of a 1.016 eV, 54 ps pulsed light source in cuprous oxide (Cu2O) at 1.4 K. A collinear, 1.165 eV, 54 ps probe delayed by 119 ps was used to measure the photoionization cross section of the excitons. Two photon absorption is quadratic with respect to the intensity of the pump and leads to polariton formation. Ionization is linear with respect to the intensity of the probe. Subsequent carrier recombination is quadratic with respect to the intenisty of the probe, and is distinguished because it shifts the exciton momentum away from the polariton anticrossing; the photoionizing probe leads to a rise in phonon-linked luminescence in addition to the attenuation of polaritons. The evolution of the exciton density was determined by variably delaying the probe pulse. Using the probe irradiance and the reduction in the transmitted polariton light, a cross section of 3.9*10^(-22) m^2 was deduced for the probe frequency.
352 - N. Naka , N. Nagasawa 2003
Density distribution of cold exciton clouds generated into a strain-induced potential well by two-photon excitation in Cu$_2$O is studied at 2 K. We find that an anomalous spike, which can be interpreted as accumulation of the excitons into the groun d state, emerges at the potential minimum. The accumulation can be due to stimulated scattering of cold excitons, mediated by acoustic phonon emission. Possibility of the formation of the thermodynamic Bose-Einstein condensate of paraexcitons has been discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا