ﻻ يوجد ملخص باللغة العربية
We study ultradistributional boundary values of zero solutions of a hypoelliptic constant coefficient partial differential operator $P(D) = P(D_x, D_t)$ on $mathbb{R}^{d+1}$. Our work unifies and considerably extends various classical results of Komatsu and Matsuzawa about boundary values of holomorphic functions, harmonic functions and zero solutions of the heat equation in ultradistribution spaces. We also give new proofs of various results of Langenbruch about distributional boundary values of zero solutions of $P(D)$.
We consider nonnegative solutions $u:Omegalongrightarrow mathbb{R}$ of second order hypoelliptic equations begin{equation*} mathscr{L} u(x) =sum_{i,j=1}^n partial_{x_i} left(a_{ij}(x)partial_{x_j} u(x) right) + sum_{i=1}^n b_i(x) partial_{x_i} u(x) =
In this paper we consider second order parabolic partial differential equations subject to the Dirichlet boundary condition on smooth domains. We establish weighted $L_{q}$-maximal regularity in weighted Triebel-Lizorkin spaces for such parabolic pro
We obtain Calderon-Zygmund type estimates in generalized Morrey spaces for nonlinear equations of $p$-Laplacian type. Our result is obtained under minimal regularity assumptions both on the operator and on the domain. This result allows us to study a
We prove weighted $L^p$-Liouville theorems for a class of second order hypoelliptic partial differential operators $mathcal{L}$ on Lie groups $mathbb{G}$ whose underlying manifold is $n$-dimensional space. We show that a natural weight is the right-i
Let (X j , d j , $mu$ j), j = 0, 1,. .. , m be metric measure spaces. Given 0 < p $kappa$ $le$ $infty$ for $kappa$ = 1,. .. , m and an analytic family of multilinear operators T z : L p 1 (X 1) x $bullet$ $bullet$ $bullet$ L p m (X m) $rightarrow$ L