ﻻ يوجد ملخص باللغة العربية
This work concerns the quantum Lorentzian and Euclidean black hole non-linear sigma models. For the Euclidean black hole sigma model an equilibrium density matrix is proposed, which reproduces the modular invariant partition function from the 2001 paper of Maldacena, Ooguri and Son. For the Lorentzian black hole sigma model, using its formulation as a gauged ${rm SL}(2,mathbb{R})$ WZW model, we describe the linear and Hermitian structure of its space of states and also propose an expression for the equilibrium density matrix. Our analysis is guided by the results of the study of a certain critical, integrable spin chain. In the scaling limit, the latter exhibits the key features of the Lorentzian black hole sigma model including the same global symmetries, the same algebra of extended conformal symmetry and a continuous spectrum of conformal dimensions.
We introduce a spin chain based on finite-dimensional spin-1/2 SU(2) representations but with a non-hermitian `Hamiltonian and show, using mostly analytical techniques, that it is described at low energies by the SL(2,R)/U(1) Euclidian black hole Con
This review is dedicated to two-dimensional sigma models with flag manifold target spaces, which are generalizations of the familiar $CP^{n-1}$ and Grassmannian models. They naturally arise in the description of continuum limits of spin chains, and t
We study four-dimensional Chern-Simons theory on $D times mathbb{C}$ (where $D$ is a disk), which is understood to describe rational solutions of the Yang-Baxter equation from the work of Costello, Witten and Yamazaki. We find that the theory is dual
We elucidate how integrable lattice models described by Costellos 4d Chern-Simons theory can be realized via a stack of D4-branes ending on an NS5-brane in type IIA string theory, with D0-branes on the D4-brane worldvolume sourcing a meromorphic RR 1
We determine the semiclassical energy levels for the phi^4 field theory in the broken symmetry phase on a 2D cylindrical geometry with antiperiodic boundary conditions by quantizing the appropriate finite--volume kink solutions. The analytic form of