ﻻ يوجد ملخص باللغة العربية
In the presence of a conserved quantity, symmetry-resolved entanglement entropies are a refinement of the usual notion of entanglement entropy of a subsystem. For critical 1d quantum systems, it was recently shown in various contexts that these quantities generally obey entropy equipartition in the scaling limit, i.e. they become independent of the symmetry sector. In this paper, we examine the finite-size corrections to the entropy equipartition phenomenon, and show that the nature of the symmetry group plays a crucial role. In the case of a discrete symmetry group, the corrections decay algebraically with system size, with exponents related to the operators scaling dimensions. In contrast, in the case of a U(1) symmetry group, the corrections only decay logarithmically with system size, with model-dependent prefactors. We show that the determination of these prefactors boils down to the computation of twisted overlaps.
We consider the problem of the decomposition of the Renyi entanglement entropies in theories with a non-abelian symmetry by doing a thorough analysis of Wess-Zumino-Witten (WZW) models. We first consider $SU(2)_k$ as a case study and then generalise
In a quantum many-body system that possesses an additive conserved quantity, the entanglement entropy of a subsystem can be resolved into a sum of contributions from different sectors of the subsystems reduced density matrix, each sector correspondin
We study the entanglement transition in monitored Brownian SYK chains in the large-$N$ limit. Without measurement the steady state $n$-th Renyi entropy is obtained by summing over a class of solutions, and is found to saturate to the Page value in th
We consider some models in the Kardar-Parisi-Zhang universality class, namely the polynuclear growth model and the totally/partially asymmetric simple exclusion process. For these models, in the limit of large time t, universality of fluctuations has
Many real world complex systems such as infrastructure, communication and transportation networks are embedded in space, where entities of one system may depend on entities of other systems. These systems are subject to geographically localized failu