ترغب بنشر مسار تعليمي؟ اضغط هنا

Evaluation of Logic Programs with Built-Ins and Aggregation: A Calculus for Bag Relations

132   0   0.0 ( 0 )
 نشر من قبل Matthew Francis-Landau
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a scheme for translating logic programs, which may use aggregation and arithmetic, into algebraic expressions that denote bag relations over ground terms of the Herbrand universe. To evaluate queries against these relations, we develop an operational semantics based on term rewriting of the algebraic expressions. This approach can exploit arithmetic identities and recovers a range of useful strategies, including lazy strategies that defer work until it becomes possible or necessary.



قيم البحث

اقرأ أيضاً

We investigate the termination problem of a family of multi-path polynomial programs (MPPs), in which all assignments to program variables are polynomials, and test conditions of loops and conditional statements are polynomial equalities. We show tha t the set of non-terminating inputs (NTI) of such a program is algorithmically computable, thus leading to the decidability of its termination. To the best of our knowledge, the considered family of MPPs is hitherto the largest one for which termination is decidable. We present an explicit recursive function which is essentially Ackermannian, to compute the maximal length of ascending chains of polynomial ideals under a control function, and thereby obtain a complete answer to the questions raised by Seidenberg. This maximal length facilitates a precise complexity analysis of our algorithms for computing the NTI and deciding termination of MPPs. We extend our method to programs with polynomial guarded commands and show how an incomplete procedure for MPPs with inequality guards can be obtained. An application of our techniques to invariant generation of polynomial programs is further presented.
112 - Vincent Nys 2017
We extend a technique called Compiling Control. The technique transforms coroutining logic programs into logic programs that, when executed under the standard left-to-right selection rule (and not using any delay features) have the same computational behavior as the coroutining program. In recent work, we revised Compiling Control and reformulated it as an instance of Abstract Conjunctive Partial Deduction. This work was mostly focused on the program analysis performed in Compiling Control. In the current paper, we focus on the synthesis of the transformed program. Instead of synthesizing a new logic program, we synthesize a CHR(Prolog) program which mimics the coroutining program. The synthesis to CHR yields programs containing only simplification rules, which are particularly amenable to certain static analysis techniques. The programs are also more concise and readable and can be ported to CHR implementations embedded in other languages than Prolog.
Abstract interpretation is a well-established technique for performing static analyses of logic programs. However, choosing the abstract domain, widening, fixpoint, etc. that provides the best precision-cost trade-off remains an open problem. This is in a good part because of the challenges involved in measuring and comparing the precision of different analyses. We propose a new approach for measuring such precision, based on defining distances in abstract domains and extending them to distances between whole analyses of a given program, thus allowing comparing precision across different analyses. We survey and extend existing proposals for distances and metrics in lattices or abstract domains, and we propose metrics for some common domains used in logic program analysis, as well as extensions of those metrics to the space of whole program analysis. We implement those metrics within the CiaoPP framework and apply them to measure the precision of different analyses over both benchmarks and a realistic program.
Algebraic characterization of logic programs has received increasing attention in recent years. Researchers attempt to exploit connections between linear algebraic computation and symbolic computation in order to perform logical inference in large sc ale knowledge bases. This paper proposes further improvement by using sparse matrices to embed logic programs in vector spaces. We show its great power of computation in reaching the fixpoint of the immediate consequence operator from the initial vector. In particular, performance for computing the least models of definite programs is dramatically improved in this way. We also apply the method to the computation of stable models of normal programs, in which the guesses are associated with initial matrices, and verify its effect when there are small numbers of negation. These results show good enhancement in terms of performance for computing consequences of programs and depict the potential power of tensorized logic programs.
Provenance is an increasing concern due to the ongoing revolution in sharing and processing scientific data on the Web and in other computer systems. It is proposed that many computer systems will need to become provenance-aware in order to provide s atisfactory accountability, reproducibility, and trust for scientific or other high-value data. To date, there is not a consensus concerning appropriate formal models or security properties for provenance. In previous work, we introduced a formal framework for provenance security and proposed formal definitions of properties called disclosure and obfuscation. In this article, we study refined notions of positive and negative disclosure and obfuscation in a concrete setting, that of a general-purpose programing language. Previous models of provenance have focused on special-purpose languages such as workflows and database queries. We consider a higher-order, functional language with sums, products, and recursive types and functions, and equip it with a tracing semantics in which traces themselves can be replayed as computations. We present an annotation-propagation framework that supports many provenance views over traces, including standard forms of provenance studied previously. We investigate some relationships among provenance views and develop some partial solutions to the disclosure and obfuscation problems, including correct algorithms for disclosure and positive obfuscation based on trace slicing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا