ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploring the Galactic Warp Through Asymmetries in the Kinematics of the Galactic Disk

61   0   0.0 ( 0 )
 نشر من قبل Xinlun Cheng
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Previous analyses of large databases of Milky Way stars have revealed the stellar disk of our Galaxy to be warped and that this imparts a strong signature on the kinematics of stars beyond the solar neighborhood. However, due to the limitation of accurate distance estimates, many attempts to explore the extent of these Galactic features have generally been restricted to a volume near the Sun. By combining Gaia DR2 astrometric solution, StarHorse distance and stellar abundances from the APOGEE survey, we present the most detailed and radially expansive study yet of the vertical and radial motions of stars in the Galactic disk. We map stellar velocity with respect to their Galactocentric radius, angular momentum, and azimuthal angle and assess their relation to the warp. A decrease in vertical velocity is discovered at Galactocentric radius $R=13 text{kpc}$ and angular momentum $L_z=2800 text{kpc} text{km} text{s}^{-1}$. Smaller ripples in vertical and radial velocity are also discovered superposed on the main trend. We also discovered that trends in the vertical velocity with azimuthal angle are not symmetric about the peak, suggesting the warp to be lopsided. To explain the global trend in vertical velocity, we built a simple analytical model of the Galactic warp. Our best fit yields a starting radius of $8.87^{+0.08}_{-0.09} text{kpc}$ and precession rate of $13.57^{+0.20}_{-0.18} text{km} text{s}^{-1} text{kpc}^{-1}$. These parameters remain consistent across stellar age groups, a result that supports the notion that the warp is the result of an external, gravitationally induced phenomenon.



قيم البحث

اقرأ أيضاً

Using Gaia DR2 astrometry, we map the kinematic signature of the Galactic stellar warp out to a distance of 7 kpc from the Sun. Combining Gaia DR2 and 2MASS photometry, we identify, via a probabilistic approach, 599 494 upper main sequence stars and 12 616 068 giants without the need for individual extinction estimates. The spatial distribution of the upper main sequence stars clearly shows segments of the nearest spiral arms. The large-scale kinematics of both the upper main sequence and giant populations show a clear signature of the warp of the Milky Way, apparent as a gradient of 5-6 km/s in the vertical velocities from 8 to 14 kpc in Galactic radius. The presence of the signal in both samples, which have different typical ages, suggests that the warp is a gravitationally induced phenomenon.
We present an updated three dimensional map of the Milky Way based on a sample of 2431 classical Cepheid variable stars, supplemented with about 200 newly detected classical Cepheids from the OGLE survey. The new objects were discovered as a result o f a dedicated observing campaign of the ~280 square degree extension of the OGLE footprint of the Galactic disk during 2018-2019 observing seasons. These regions cover the main part of the northern Galactic warp that has been deficient in Cepheids so far. We use direct distances to the sample of over 2390 classical Cepheids to model the distribution of the young stellar population in the Milky Way and recalculate the parameters of the Galactic disk warp. Our data show that its northern part is very prominent and its amplitude is ~10% larger than that of the southern part. By combining Gaia astrometric data with the Galactic rotation curve and distances to Cepheids from our sample, we construct a map of the vertical component of the velocity vector for all Cepheids in the Milky Way disk. We find large-scale vertical motions with amplitudes of 10-20 km/s, such that Cepheids located in the northern warp exhibit large positive vertical velocity (toward the north Galactic pole), whereas those in the southern warp - negative vertical velocity (toward the south Galactic pole).
We report measurements of parallax and proper motion for four 22 GHz water maser sources as part of VERA Outer Rotation Curve project. All sources show Galactic latitudes of $>$ 2$^{circ}$ and Galactocentric distances of $>$ 11 kpc at the Galactic lo ngitude range of 95$^{circ}$ $< l <$ 126$^{circ}$. The sources trace the Galactic warp reaching to 200$sim$400 pc, and indicate the signature of the warp to 600 pc toward the north Galactic pole. The new results along with previous results in the literature show the maximum height of the Galactic warp is increased with Galactocentric distance. Also, we examined velocities perpendicular to the disk for the sample, and found an oscillatory behavior between the vertical velocities and Galactic heights. This behavior suggests the existence of the bending (vertical density) waves, possibly induced by a perturbing satellite (e.g. passage of the Sagittarius dwarf galaxy).
104 - M. Romero-Gomez 2018
There are few warp kinematic models of the Galaxy able to characterise structure and kinematics. These models are necessary to study the lopsidedness of the warp and the twisting of the line-of-nodes of the stellar warp, already seen in gas and dust. We use the Gaia~Data Release 2 astrometric data up to $G=20$mag to characterise the structure of the Galactic warp, the vertical motions and the dependency on the age. We use two populations up to galactocentric distances of $16$kpc, a young (OB-type) and an old (Red Giant Branch, RGB). We use the nGC3 PCM and LonKin methods based on the Gaia observables, together with 2D projections of the positions and proper motions in the Galactic plane. We confirm the age dependency of the Galactic warp, both in positions and kinematics, being the height of the Galactic warp of about $0.2$kpc for the OB sample and of $1.$kpc for the RGB at a galactocentric distance of $14$kpc. Both methods find that the onset radius is $12sim 13$kpc for the OB sample and $10sim 11$kpc for the RGB. From the RGB sample, we find from galactocentric distances larger than $10$kpc the line-of-nodes twists away from the Sun-anticentre line towards galactic azimuths $sim 180-200^{circ}$ increasing with radius, though possibly influenced by extinction. The RGB sample reveals a slightly lopsided stellar warp with $sim 250$pc between the up and down sides. The line of maximum of proper motions in latitude is systematically offset from the line-of-nodes estimated from the spatial data, which our models predict as a kinematic signature of lopsidedness. We also show a prominent wave-like pattern of a bending mode different in the OB and RGB, and substructures that might not be related to the Galactic warp nor to a bending mode. GDR2 triggers the need for complex kinematic models, flexible enough to combine both wave-like patterns and an S-shaped lopsided warp.[abridged]
The rotational evolution of cool dwarfs is poorly constrained after around 1-2 Gyr due to a lack of precise ages and rotation periods for old main-sequence stars. In this work we use velocity dispersion as an age proxy to reveal the temperature-depen dent rotational evolution of low-mass Kepler dwarfs, and demonstrate that kinematic ages could be a useful tool for calibrating gyrochronology in the future. We find that a linear gyrochronology model, calibrated to fit the period-Teff relationship of the Praesepe cluster, does not apply to stars older than around 1 Gyr. Although late-K dwarfs spin more slowly than early-K dwarfs when they are young, at old ages we find that late-K dwarfs rotate at the same rate or faster than early-K dwarfs of the same age. This result agrees qualitatively with semi-empirical models that vary the rate of surface-to-core angular momentum transport as a function of time and mass. It also aligns with recent observations of stars in the NGC 6811 cluster, which indicate that the surface rotation rates of K dwarfs go through an epoch of inhibited evolution. We find that the oldest Kepler stars with measured rotation periods are late-K and early-M dwarfs, indicating that these stars maintain spotted surfaces and stay magnetically active longer than more massive stars. Finally, based on their kinematics, we confirm that many rapidly rotating GKM dwarfs are likely to be synchronized binaries.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا