ترغب بنشر مسار تعليمي؟ اضغط هنا

Origin of the Magnetic and Orbital ordering in $alpha$-Sr$_2$CrO$_4$

146   0   0.0 ( 0 )
 نشر من قبل Bradraj Pandey
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Motivated by recent experimental progress in transition metal oxides with the K$_2$NiF$_4$ structure, we investigate the magnetic and orbital ordering in $alpha$-Sr$_2$CrO$_4$. Using first principles calculations, first we derive a three-orbital Hubbard model, which reproduces the {it ab initio} band structure near the Fermi level. The unique reverse splitting of $t_{2g}$ orbitals in $alpha$-Sr$_2$CrO$_4$, with the $3d^2$ electronic configuration for the Cr$^{4+}$ oxidation state, opens up the possibility of orbital ordering in this material. Using real-space Hartree-Fock for multi-orbital systems, we constructed the ground-state phase diagram for the two-dimensional compound $alpha$-Sr$_2$CrO$_4$. We found stable ferromagnetic, antiferromagnetic, antiferro-orbital, and staggered orbital stripe ordering in robust regions of the phase diagram. Furthermore, using the density matrix renormalization group method for two-leg ladders with the realistic hopping parameters of $alpha$-Sr$_2$CrO$_4$, we explore magnetic and orbital ordering for experimentally relevant interaction parameters. Again, we find a clear signature of antiferromagnetic spin ordering along with antiferro-orbital ordering at moderate to large Hubbard interaction strength. We also explore the orbital-resolved density of states with Lanczos, predicting insulating behavior for the compound $alpha$-Sr$_2$CrO$_4$, in agreement with experiments. Finally, an intuitive understanding of the results is provided based on a hierarchy between orbitals, with $d_{xy}$ driving the spin order, while electronic repulsion and the effective one dimensionality of the movement within the $d_{xz}$ and $d_{yz}$ orbitals driving the orbital order.

قيم البحث

اقرأ أيضاً

The origin of successive phase transitions observed in the layered perovskite $alpha$-Sr$_2$CrO$_4$ is studied by the density-functional-theory-based electronic structure calculation and mean-field analysis of the proposed low-energy effective model. We find that, despite the fact that the CrO$_6$ octahedron is elongated along the $c$-axis of the crystal structure, the crystal-field level of nondegenerate $3d_{xy}$ orbitals of the Cr ion is lower in energy than that of doubly degenerate $3d_{yz}$ and $3d_{xz}$ orbitals, giving rise to the orbital degrees of freedom in the system with a $3d^2$ electron configuration. We show that the higher (lower) temperature phase transition is caused by the ordering of the orbital (spin) degrees of freedom.
The rich phenomenology engendered by the coupling between the spin and orbital degrees of freedom has become appreciated as a key feature of many strongly-correlated electron systems. The resulting emergent physics is particularly prominent in a numb er of materials, from Fe-based unconventional superconductors to transition metal oxides, including manganites and vanadates. Here, we investigate the electronic ground states of $alpha$-Sr$_2$CrO$_4$, a compound that is a rare embodiment of the spin-1 Kugel-Khomskii model on the square lattice -- a paradigmatic platform to capture the physics of coupled magnetic and orbital electronic orders. We have used resonant X-ray diffraction at the Cr-$K$ edge to reveal N{e}el magnetic order at the in-plane wavevector $mathbf{Q}_N = (1/2, 1/2)$ below $T_N = 112$ K, as well as an additional electronic order at the stripe wavevector $mathbf{Q}_s = (1/2, 0)$ below T$_s$ $ sim 50$ K. These findings are examined within the framework of the Kugel-Khomskii model by a combination of mean-field and Monte-Carlo approaches, which supports the stability of the spin N{e}el phase with subsequent lower-temperature stripe orbital ordering, revealing a candidate mechanism for the experimentally observed peak at $mathbf{Q}_s$. On the basis of these findings, we propose that $alpha$-Sr$_2$CrO$_4$ serves as a new platform in which to investigate multi-orbital physics and its role in the low-temperature phases of Mott insulators.
Motivated by an experimental finding that the successive phase transitions in $alpha$-Sr$_2$CrO$_4$ observed at ambient pressure ceases to exist under high pressures, we carry out the density-functional-theory-based electronic structure calculations and demonstrate that the reversal of the crystal-field splitting reported previously is restored under high pressures, so that the orbital degrees of freedom disappears, resulting in the single phase transition that divides the system into high-temperature Mott insulating and low-temperature antiferromagnetic insulating phases.
We review the magnetic and orbital ordered states in cro{} by performing Resonant Elastic X-ray Scattering (REXS) at the Ru L$_{2,3}$-edges. In principle, the point symmetry at Ru sites does not constrain the direction of the magnetic moment below $T _N$. However early measurements reported the ordered moment entirely along the $vec{b}$ orthorhombic axis. Taking advantage of the large resonant enhancement of the magnetic scattering close to the Ru L$_2$ and L$_3$ absorption edges, we monitored the azimuthal, thermal and energy dependence of the REXS intensity and find that a canting ($m_c simeq 0.1 m_b$) along the $vec{c}$-orthorhombic axis is present. No signal was found for $m_a$ despite this component also being allowed by symmetry. Such findings are interpreted by a microscopic model Hamiltonian, and pose new constraints on the parameters describing the model. Using the same technique we reviewed the accepted orbital ordering picture. We detected no symmetry breaking associated with the signal increase at the so-called orbital ordering temperature ($simeq 260$ K). We did not find any changes of the orbital pattern even through the antiferromagnetic transition, suggesting that, if any, only a complex rearrangement of the orbitals, not directly measurable using linearly polarized light, can take place.
175 - S. Bahr , A. Alfonsov , G. Jackeli 2013
We report a high-field electron spin resonance study in the sub-THz frequency domain of a single crystal of Sr$_2$IrO$_4$ that has been recently proposed as a prototypical spin-orbital Mott insulator. In the antiferromagnetically (AFM) ordered state with noncollinear spin structure that occurs in this material at $T_{rm N} approx 240$ K we observe both the low frequency mode due to the precession of weak ferromagnetic moments arising from a spin canting, and the high frequency modes due to the precession of the AFM sublattices. Surprisingly, the energy gap for the AFM excitations appears to be very small, amounting to 0.83 meV only. This suggests a rather isotropic Heisenberg dynamics of interacting Ir$^{4+}$ effective spins despite the spin-orbital entanglement in the ground state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا