ﻻ يوجد ملخص باللغة العربية
Diffuse radio emission has been found in many galaxy clusters, predominantly in massive systems which are in the state of merging. The radio emission can usually be classified as relic or halo emission, which are believed to be related to merger shocks or volume-filling turbulence, respectively. Recent observations have revealed radio bridges for some pairs of very closeby galaxy clusters. The mechanisms that may allow to explain the high specific density of relativistic electrons, necessary to explain the radio luminosity of these bridge regions, are poorly explored. We analyse the galaxy cluster Abell 1430 with LoTSS data in detail and complement it with recent JVLA L-band observations, XMM-Newton, Chandra, and SDSS data. Moreover, we compare our results to clusters extracted from the The Three Hundred Project cosmological simulation. We find that Abell 1430 consists of two components, namely A1430-A and A1430-B. We speculate that the two components undergo an off-axis merger. The more massive component shows diffuse radio emission which can be classified as radio halo showing a low radio power given the mass of the cluster. Most interestingly, there is extended diffuse radio emission, dubbed as the `Pillow, which is apparently related to A1430-B and thus related to low density intracluster or intergalactic medium. To date, a only few examples for emission originating from such regions are known. These discoveries are crucial to constrain possible acceleration mechanisms, which may allow to explain the presence of relativistic electrons in these regions. Our results indicate a spectral index of $alpha_{144,text{MHz}}^{1.5,text{GHz}}=-1.4pm0.5$ for the Pillow. If future observations confirm a slope as flat as the central value of -1.4 or even flatter, this would pose a severe challenge for the electron acceleration scenarios.
We explore the internal dynamics of Abell 2254, which has been shown to host a very clumpy and irregular radio halo. Our analysis is mainly based on redshift data for 128 galaxies acquired at the TNG. We also use new g,r,i photometric data acquired a
We present a new 400ks Chandra X-ray observation and a GMRT radio observation at 325MHz of the merging galaxy cluster Abell 2146. The Chandra observation reveals detailed structure associated with the major merger event including the Mach M=2.1+/-0.2
We aim to review the internal structure and dynamics of the Abell 1351 cluster, shown to host a radio halo with a quite irregular shape. Our analysis is based on radial velocity data for 135 galaxies obtained at the Telescopio Nazionale Galileo. We c
A number of radio observations have revealed the presence of large synchrotron-emitting sources associated with the intra-cluster medium. There is strong observational evidence that the emitting particles have been (re-)accelerated by shocks and turb
Deep radio observations of the galaxy cluster Abell 781 have been carried out using the Giant Metrewave Radio Telescope at 325 MHz and have been compared to previous 610 MHz observations and to archival VLA 1.4 GHz data. The radio emission from the c