ﻻ يوجد ملخص باللغة العربية
Magnetic atoms can break the Cooper pairs of superconductors, leading to the formation of Yu-Shiba-Rusinov (YSR) bound states inside superconducting gaps. Theory predicts that the YSR bound states can be controlled by tuning the electron density at the Fermi energy, but it has not been studied deeply. In this work, we studied the nature of YSR bound states in response to the potential scattering U by tuning the electron density at the Fermi energy. By comparing two systems, Mn-phthalocyanine molecules on Pb(111) and Co atoms on PbSe/Pb(111), we demonstrate that the sign of U can be unambiguously determined by varying the electron density at the Fermi energy. We also show that U competes with the exchange interaction JS in the formation of YSR bound states. Our work provides insights into the interactions between magnetic atoms and superconductors at a fundamental level.
There is presently a tremendous activity around the field of topological superconductivity and Majorana fermions. Among the many questions raised, it has become increasingly important to establish the topological or non-topological origin of features
We study an interacting quantum dot in contact with a small superconducting island described by the interacting pairing model with charging (Coulomb) energy $E_c$. This charge-conserving Hamiltonian admits a compact matrix-product-operator representa
By using scanning tunneling microscopy (STM) we find and characterize dispersive, energy-symmetric in-gap states in the iron-based superconductor $mathrm{FeTe}_{0.55}mathrm{Se}_{0.45}$, a material that exhibits signatures of topological superconducti
The coupling of a spin to an underlying substrate is the basis for a plethora of phenomena. In the case of a metallic substrate, Kondo screening of the adatom magnetic moment can occur. As the substrate turns superconducting, an intriguing situation
Recent studies of mutually interacting magnetic atoms coupled to a superconductor have gained enormous interest due to the potential realization of topological superconductivity. The Kondo exchange coupling J_K of such atoms with the electrons in the