ﻻ يوجد ملخص باللغة العربية
We discuss the symplectic topology of the Stein manifolds obtained by plumbing two 3-dimensional spheres along a circle. These spaces are related, at a derived level and working in a characteristic determined by the specific geometry, to local threefolds which contain two floppable $(-1,-1)$-curves meeting at a point. Using contraction algebras we classify spherical objects on the B-side, and derive topological consequences including a complete description of the homology classes realised by graded exact Lagrangians.
Type IIA on the conifold is a prototype example for engineering QED with one charged hypermultiplet. The geometry admits a flop of length one. In this paper, we study the next generation of geometric engineering on singular geometries, namely flops o
We introduce Poisson double algebroids, and the equivalent concept of double Lie bialgebroid, which arise as second-order infinitesimal counterparts of Poisson double groupoids. We develop their underlying Lie theory, showing how these objects are re
Associated to a Mukai flop X ---> X is on the one hand a sequence of equivalences D(X) -> D(X), due to Kawamata and Namikawa, and on the other hand a sequence of autoequivalences of D(X), due to Huybrechts and Thomas. We work out a complete picture o
Let $M$ be an exact symplectic manifold with $c_1(M)=0$. Denote by $mathrm{Fuk}(M)$ the Fukaya category of $M$. We show that the dual space of the bar construction of $mathrm{Fuk}(M)$ has a differential graded noncommutative Poisson structure. As a c
In this paper, we first show a projectivization formula for the derived category $D^b_{rm coh} (mathbb{P}(mathcal{E}))$, where $mathcal{E}$ is a coherent sheaf on a regular scheme which locally admits two-step resolutions. Second, we show that flop-f