ﻻ يوجد ملخص باللغة العربية
Deep neural networks have achieved state-of-the-art performance in a variety of fields. Recent works observe that a class of widely used neural networks can be viewed as the Euler method of numerical discretization. From the numerical discretization perspective, Strong Stability Preserving (SSP) methods are more advanced techniques than the explicit Euler method that produce both accurate and stable solutions. Motivated by the SSP property and a generalized Runge-Kutta method, we propose Strong Stability Preserving networks (SSP networks) which improve robustness against adversarial attacks. We empirically demonstrate that the proposed networks improve the robustness against adversarial examples without any defensive methods. Further, the SSP networks are complementary with a state-of-the-art adversarial training scheme. Lastly, our experiments show that SSP networks suppress the blow-up of adversarial perturbations. Our results open up a way to study robust architectures of neural networks leveraging rich knowledge from numerical discretization literature.
Strong stability preserving (SSP) Runge-Kutta methods are often desired when evolving in time problems that have two components that have very different time scales. Where the SSP property is needed, it has been shown that implicit and implicit-expli
Problems that feature significantly different time scales, where the stiff time-step restriction comes from a linear component, implicit-explicit (IMEX) methods alleviate this restriction if the concern is linear stability. However, where the SSP pro
Strong stability preserving (SSP) Runge-Kutta methods are desirable when evolving in time problems that have discontinuities or sharp gradients and require nonlinear non-inner-product stability properties to be satisfied. Unlike the case for L2 linea
When evolving in time the solution of a hyperbolic partial differential equation, it is often desirable to use high order strong stability preserving (SSP) time discretizations. These time discretizations preserve the monotonicity properties satisfie
In this work we present a class of high order unconditionally strong stability preserving (SSP) implicit multi-derivative Runge--Kutta schemes, and SSP implicit-explicit (IMEX) multi-derivative Runge--Kutta schemes where the time-step restriction is