ترغب بنشر مسار تعليمي؟ اضغط هنا

Determination of the spin axis in quantum spin Hall insulator monolayer WTe2

316   0   0.0 ( 0 )
 نشر من قبل Wenjin Zhao
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Evidence for the quantum spin Hall (QSH) effect has been reported in several experimental systems in the form of approximately quantized edge conductance. However, the most fundamental feature of the QSH effect, spin-momentum locking in the edge channels, has never been demonstrated experimentally. Here, we report clear evidence for spin-momentum locking in the edge channels of monolayer WTe2, thought to be a two-dimensional topological insulator (2D TI). We observe that the edge conductance is controlled by the component of an applied magnetic field perpendicular to a particular axis, which we identify as the spin axis. The axis is the same for all edges, situated in the mirror plane perpendicular to the tungsten chains at 40$pm$2{deg} to the layer normal, implying that the spin-orbit coupling is inherited from the bulk band structure. We show that this finding is consistent with theory if the band-edge orbitals are taken to have like parity. We conclude that this parity assignment is correct and that both edge states and bulk bands in monolayer WTe2 share the same simple spin structure. Combined with other known features of the edge states this establishes spin-momentum locking, and therefore that monolayer WTe2 is truly a natural 2D TI.

قيم البحث

اقرأ أيضاً

A two-dimensional (2D) topological insulator (TI) exhibits the quantum spin Hall (QSH) effect, in which topologically protected spin-polarized conducting channels exist at the sample edges. Experimental signatures of the QSH effect have recently been reported for the first time in an atomically thin material, monolayer WTe2. Electrical transport measurements on exfoliated samples and scanning tunneling spectroscopy on epitaxially grown monolayer islands signal the existence of edge modes with conductance approaching the quantized value. Here, we directly image the local conductivity of monolayer WTe2 devices using microwave impedance microscopy, establishing beyond doubt that conduction is indeed strongly localized to the physical edges at temperatures up to 77 K and above. The edge conductivity shows no gap as a function of gate voltage, ruling out trivial conduction due to band bending or in-gap states, and is suppressed by magnetic field as expected. Interestingly, we observe additional conducting lines and rings within most samples which can be explained by edge states following boundaries between topologically trivial and non-trivial regions. These observations will be critical for interpreting and improving the properties of devices incorporating WTe2 or other air-sensitive 2D materials. At the same time, they reveal the robustness of the QSH channels and the potential to engineer and pattern them by chemical or mechanical means in the monolayer material platform.
Monolayer WTe2 is predicted to be a quantum spin Hall insulator (QSHI) and electron transport along its edges has been experimentally observed. However, the smoking gun of QSHI, spin momentum locking of the edge electrons, has not been experimentally demonstrated. We propose a model to establish the relationship between the anisotropic magnetoresistance (AMR) and spin orientation of the helical electrons in WTe2. Based on the predictions of the model, angular dependent magnetoresistance measurements were carried out. The experimental results fully supported the model and the spin orientation of the helical edge electrons was determined. Our results not only demonstrate that WTe2 is indeed a QSHI, but also suggest a convenient method to determine the spin orientation of other QSHIs.
We report an unconventional quantum spin Hall phase in the monolayer T$_text{d}$-WTe$_2$, which exhibits hitherto unknown features in other topological materials. The low-symmetry of the structure induces a canted spin texture in the $yz$ plane, whic h dictates the spin polarization of topologically protected boundary states. Additionally, the spin Hall conductivity gets quantized ($2e^2/h$) with a spin quantization axis parallel to the canting direction. These findings are based on large-scale quantum simulations of the spin Hall conductivity tensor and nonlocal resistances in multi-probe geometries using a realistic tight-binding model elaborated from first-principle methods. The observation of this canted quantum spin Hall effect, related to the formation of topological edge states with nontrivial spin polarization, demands for specific experimental design and suggests interesting alternatives for manipulating spin information in topological materials.
Quantum spin Hall (QSH) materials are two-dimensional systems exhibiting insulating bulk and helical edge states simultaneously. A QSH insulator processes topologically non-trivial edge states protected by time-reversal symmetry, so that electrons ca n propagate unscattered. Realization of such topological phases enables promising applications in spintronics, dissipationless transport and quantum computations. Presently, realization of such QSH-based devices are limited to complicated heterostructures. Monolayer 1T-WTe2 was predicted to be semimetallic QSH materials, though with a negative band gap. The quasi-particle spectrum obtained using hybrid functional approach shows directly that the quantum spin Hall gap is positive for monolayer 1T-WTe2. Optical measurement shows a systematic increase in the interband relaxation time with decreasing number of layers, whereas transport measurement reveals Schottcky barrier in ultrathin samples, which is absent for thicker samples. These three independent pieces of evidence indicate that monolayer 1T-WTe2 is likely a truly 2-dimensional quantum spin Hall insulator.
The quantum spin Hall (QSH) state was recently demonstrated in monolayers of the transition metal dichalcogenide 1T-WTe$_2$ and is characterized by a band gap in the two-dimensional (2D) interior and helical one-dimensional (1D) edge states. Inducing superconductivity in the helical edge states would result in a 1D topological superconductor, a highly sought-after state of matter. In the present study, we use a novel dry-transfer flip technique to place atomically-thin layers of WTe$_2$ on a van der Waals superconductor, NbSe$_2$. Using scanning tunneling microscopy and spectroscopy (STM/STS), we demonstrate atomically clean surfaces and interfaces and the presence of a proximity-induced superconducting gap in the WTe$_2$ for thicknesses from a monolayer up to 7 crystalline layers. At the edge of the WTe$_2$ monolayer, we show that the superconducting gap coexists with the characteristic spectroscopic signature of the QSH edge state. Taken together, these observations provide conclusive evidence for proximity-induced superconductivity in the QSH edge state in WTe$_2$, a crucial step towards realizing 1D topological superconductivity and Majorana bound states in this van der Waals material platform.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا