ترغب بنشر مسار تعليمي؟ اضغط هنا

Electronic properties of substitutional impurities in graphene-like C$_2$N, $tg$-C$_3$N$_4$, and $hg$-C$_3$N$_4$

325   0   0.0 ( 0 )
 نشر من قبل Marcos Menezes
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the electronic and structural properties of substitutional impurities of graphenelike nanoporous materials C$_2$N, $tg$-, and $hg$-C$_3$N$_4$ by means of density functional theory calculations. We consider four types of impurities; boron substitution on carbon sites (B(C)), carbon substitution on nitrogen sites (C(N)), nitrogen substitution on carbon sites (N(C)), and sulfur substitution on nitrogen sites (S(N)). From cohesive energy calculations, we find that the C(N) and B(C) substitutions are the most energetically favorable and induce small bond modifications in the vicinity of the impurity, while the S(N) induces strong lattice distortions. Though all of the studied impurities induce defect levels inside the band gap of these materials, their electronic properties are poles apart depending on the behavior of the impurity as an acceptor or a donor. It is also observed that acceptor (donor) wavefunctions are composed only of $sigma$ ($pi$) orbitals from the impurity itself and/or neighboring sites. Consequently, acceptor wavefunctions are directed towards the pores and donor wavefunctions are more extended throughout the neighboring atoms, a property that could further be explored to modify the interaction between these materials and adsorbates. Moreover, impurity properties display a strong site sensitivity and ground state binding energies ranging from $0.03$ to $1.13$ eV, thus offering an interesting route for tuning the optical properties of these materials. Finally, spin-polarized calculations reveal that all impurity configurations have a magnetic ground state that rises from the spin splitting of the impurity levels. In a few configurations, more than one impurity level can be found inside the gap and two of them could potentially be explored as two-level systems for single-photon emission, following similar proposals recently made on defect complexes on TMDCs.

قيم البحث

اقرأ أيضاً

The electronic and thermal transport properties have been systematically investigated in monolayer C$_4$N$_3$H with first-principles calculations. The intrinsic thermal conductivity of monolayer C$_4$N$_3$H was calculated coupling with phonons Boltzm ann transport equation. For monolayer C$_4$N$_3$H, the thermal conductivity (k{appa}) (175.74 and 157.90 W m-1K-1 with a and b-plane, respectively) is significantly lower than that of graphene (3500 Wm$^{-1}$K$^{-1}$) and C3N(380 Wm$^{-1}$K$^{-1}$). Moreover, it is more than the second time higher than C$_2$N (82.88 Wm$^{-1}$K$^{-1}$) at 300 K. Furthermore, the group velocities, relax time, anharmonicity, as well as the contribution from different phonon branches, were thoroughly discussed in detail. A comparison of the thermal transport characters among 2D structure for monolayer C$_4$N$_3$H, graphene, C$_2$N and C$_3$N has been discussed. This work highlights the essence of phonon transport in new monolayer material.
102 - W. Tao , L. M. Chen , X. M. Wang 2013
The bulk single crystals of $S = 1$ chain compound Ni(C$_3$H$_{10}$N$_2$)$_2$NO$_2$ClO$_4$ are grown by using a slow evaporation method at a constant temperature and a slow cooling method. It is found that the optimum condition of growing large cryst als is via slow evaporation at 25 $^circ$C using 0.015 mol Ni(ClO$_4$)$_2$$cdot$6H$_2$O, 0.015 mol NaNO$_2$, and 0.03 mol 1,3-propanediamine liquid dissolved into 30 ml aqueous solvent. High-quality crystals with size up to $18 times 7.5 times 5$ mm$^3$ are obtained. The single crystals are characterized by measurements of x-ray diffraction, magnetic susceptibility, specific heat and thermal conductivity. The susceptibilities along three crystallographic axes are found to exhibit broad peaks at $sim 55$ K, and then decrease abruptly to zero at lower temperatures, which is characteristic of a Haldane chain system. The specific heat and the thermal conductivity along the $c$ axis can be attributed to the simple phononic contribution and are analyzed using the Debye approximation.
With exceptional electrical and mechanical properties and at the same time air-stability, layered MoSi2N4 has recently draw great attention. However, band structure engineering via strain and electric field, which is vital for practical applications, has not yet been explored. In this work, we show that the biaxial strain and external electric field are effective ways for the band gap engineering of bilayer MoSi$_2$N$_4$ and WSi$_2$N$_4$. It is found that strain can lead to indirect band gap to direct band gap transition. On the other hand, electric field can result in semiconductor to metal transition. Our study provides insights into the band structure engineering of bilayer MoSi$_2$N$_4$ and WSi$_2$N$_4$ and would pave the way for its future nanoelectronics and optoelectronics applications.
Searching for two-dimensional (2D) organic Dirac materials, which have more adaptable practical applications in comparing with inorganic ones, is of great significance and has been ongoing. However, only two kinds of these materials with low Fermi ve locity have been discovered so far. Herein, we report the design of an organic monolayer with C$_4$N$_3$H stoichiometry which possesses fascinating structure and good stability in its free-standing state. More importantly, we demonstrate that this monolayer is a semimetal with anisotropic Dirac cones and very high Fermi velocity. This Fermi velocity is roughly one order of magnitude larger than that in 2D organic Dirac materials ever reported, and is comparable to that in graphene. The Dirac states in this monolayer arise from the extended $pi$-electron conjugation system formed by the overlapping 2emph{p}$_z$ orbitals of carbon and nitrogen atoms. Our finding opens a door for searching more 2D organic Dirac materials with high Fermi velocity.
Titan harbors a dense, organic-rich atmosphere primarily composed of N$_2$ and CH$_4$, with lesser amounts of hydrocarbons and nitrogen-bearing species. As a result of high sensitivity observations by the Atacama Large Millimeter/submillimeter Array (ALMA) in Band 6 ($sim$230-272 GHz), we obtained the first spectroscopic detection of CH$_3$C$_3$N (methylcyanoacetylene or cyanopropyne) in Titans atmosphere through the observation of seven transitions in the $J = 64rightarrow63$ and $J = 62rightarrow61$ rotational bands. The presence of CH$_3$C$_3$N on Titan was suggested by the Cassini Ion and Neutral Mass Spectrometer detection of its protonated form: C$_4$H$_3$NH$^+$, but the atmospheric abundance of the associated (deprotonated) neutral product is not well constrained due to the lack of appropriate laboratory reaction data. Here, we derive the column density of CH$_3$C$_3$N to be (3.8-5.7)$times10^{12}$ cm$^{-2}$ based on radiative transfer models sensitive to altitudes above 400 km Titans middle atmosphere. When compared with laboratory and photochemical model results, the detection of methylcyanoacetylene provides important constraints for the determination of the associated production pathways (such as those involving CN, CCN, and hydrocarbons), and reaction rate coefficients. These results also further demonstrate the importance of ALMA and (sub)millimeter spectroscopy for future investigations of Titans organic inventory and atmospheric chemistry, as CH$_3$C$_3$N marks the heaviest polar molecule detected spectroscopically in Titans atmosphere to date.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا