ﻻ يوجد ملخص باللغة العربية
We investigate the resonance energy transfer (RET) rate between two quantum emitters near a suspended graphene sheet in vacuum under the influence of an external magnetic field. We perform the analysis for low and room temperatures and show that, due to the extraordinary magneto-optical response of graphene, it allows for an active control and tunability of the RET even in the case of room temperature. We also demonstrate that the RET rate is extremely sensitive to small variations of the applied magnetic field, and can be tuned up to a striking six orders of magnitude for quite realistic values of magnetic field. Moreover, we evidence the fundamental role played by the magnetoplasmon polaritons supported by the graphene monolayer as the dominant channel for the RET within a certain distance range. Our results suggest that magneto-optical media may take the manipulation of energy transfer between quantum emitters to a whole new level, and broaden even more its great spectrum of applications.
The discovery of the hydrodynamic electron liquid (HEL) in graphene [D. Bandurin emph{et al.}, Science {bf 351}, 1055 (2016) and J. Crossno emph{et al.}, Science {bf 351}, 1058 (2016)] has marked the birth of the solid-state HEL which can be probed n
The sensitive correlation between optical parameters and strain in Mo$S_2$ results in a totally different approach to tune the optical properties. Usually, an external source of strain is employed to monitor the optical and vibrational properties of
We study the anomalous Hall effect, magneto-optical properties, and nonlinear optical properties of twisted bilayer graphene (TBG) aligned with hexagonal boron nitride (hBN) substrate as well as twisted double bilayer graphene systems. We show that n
Scalable quantum photonic networks require coherent excitation of quantum emitters. However, many solid-state systems can undergo a transition to a dark shelving state that inhibits the fluorescence. Here we demonstrate that a controlled gating using
Electronic coherence is of utmost importance for the access and control of quantum-mechanical solid-state properties. Using a purely electronic observable, the photocurrent, we measure an electronic coherence time of 22 +/- 4 fs in graphene. The phot