ﻻ يوجد ملخص باللغة العربية
The complex Fermi surfaces of transition-metal dichalcogenides (TMDCs) challenge the standard Peierls-instability-driven charge-density-wave (CDW) formation. Recently, evidence has been accumulating of a prominent role of ionic thermal fluctuations, which frozen out below $T_{CDW}$ inducing a periodic lattice distortion (PLD). We focus on $2H$-NbSe$_2$, displaying a quasi-commensurate CDW below $T_{CDW}$ $approx$33 K, and use time-resolved optical spectroscopy (TR-OS) to detect and disentangle the electronic and lattice degrees of freedom. We reveal a fingerprint of the ordered phase at h$ u$ $sim$1 eV: at $T_{CDW}$, a divergent relaxation timescale and a sign-change of the differential reflectivity indicate that CDW gap opening and PLD formation occur at the same temperature. However, we show that these effects can be decoupled under moderate photoexcitation, forming a long-lived state in which the electronic order is destroyed, but the lattice distortion is not. Our results and computations suggest an unconventional CDW mechanims in $2H$-NbSe$_2$, highlighting the dominant role of the lattice in driving the ordered-phase formation.
A charge-density wave (CDW) state has a broken symmetry described by a complex order parameter with an amplitude and a phase. The conventional view, based on clean, weak-coupling systems, is that a finite amplitude and long-range phase coherence set
Despite being usually considered two competing phenomena, charge-density-wave and superconductivity coexist in few systems, the most emblematic one being the transition metal dichalcogenide 2H-NbSe$_2$. This unusual condition is responsible for speci
The interplay between charge density wave (CDW) order and superconductivity has attracted much attention. This is the central issue of along standing debate in simple transition metal dichalcogenides without strong electronic correlations, such as 2H
The two charge-density wave (CDW) transitions in NbSe$_3$ %at wave numbers at $bm{q_1}$ and $bm{q_2}$, occurring at the surface were investigated by scanning tunneling microscopy (STM) on emph{in situ} cleaved $(bm{b},bm{c})$ plane. The temperature d
Hysteresis underlies a large number of phase transitions in solids, giving rise to exotic metastable states that are otherwise inaccessible. Here, we report an unconventional hysteretic transition in a quasi-2D material, EuTe4. By combining transport