ترغب بنشر مسار تعليمي؟ اضغط هنا

Comparative Analysis of Control Barrier Functions and Artificial Potential Fields for Obstacle Avoidance

59   0   0.0 ( 0 )
 نشر من قبل Andrew Singletary
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Artificial potential fields (APFs) and their variants have been a staple for collision avoidance of mobile robots and manipulators for almost 40 years. Its model-independent nature, ease of implementation, and real-time performance have played a large role in its continued success over the years. Control barrier functions (CBFs), on the other hand, are a more recent development, commonly used to guarantee safety for nonlinear systems in real-time in the form of a filter on a nominal controller. In this paper, we address the connections between APFs and CBFs. At a theoretic level, we prove that APFs are a special case of CBFs: given a APF one obtains a CBFs, while the converse is not true. Additionally, we prove that CBFs obtained from APFs have additional beneficial properties and can be applied to nonlinear systems. Practically, we compare the performance of APFs and CBFs in the context of obstacle avoidance on simple illustrative examples and for a quadrotor, both in simulation and on hardware using onboard sensing. These comparisons demonstrate that CBFs outperform APFs.

قيم البحث

اقرأ أيضاً

This paper introduces control barrier functions for discrete-time systems, which can be shown to be necessary and sufficient for controlled invariance of a given set. Moreover, we propose nonlinear discrete-time control barrier functions for partiall y control affine systems that lead to controlled invariance conditions that are affine in the control input, leading to a tractable formulation that enables us to handle the safety optimal control problem for a broader range of applications with more complicated safety conditions than existing approaches. In addition, we develop mixed-integer formulations for basic and secondary Boolean compositions of multiple control barrier functions and further provide mixed-integer constraints for piecewise control barrier functions. Finally, we apply these discrete-time control barrier function tools to automotive safety problems of lane keeping and obstacle avoidance, which are shown to be effective in simulation.
Sampling-based methods such as Rapidly-exploring Random Trees (RRTs) have been widely used for generating motion paths for autonomous mobile systems. In this work, we extend time-based RRTs with Control Barrier Functions (CBFs) to generate, safe moti on plans in dynamic environments with many pedestrians. Our framework is based upon a human motion prediction model which is well suited for indoor narrow environments. We demonstrate our approach on a high-fidelity model of the Toyota Human Support Robot navigating in narrow corridors. We show in three scenarios that our proposed online method can navigate safely in the presence of moving agents with unknown dynamics.
We design and experimentally evaluate a hybrid safe-by-construction collision avoidance controller for autonomous vehicles. The controller combines into a single architecture the respective advantages of an adaptive controller and a discrete safe con troller. The adaptive controller relies on model predictive control to achieve optimal efficiency in nominal conditions. The safe controller avoids collision by applying two different policies, for nominal and out-of-nominal conditions, respectively. We present design principles for both the adaptive and the safe controller and show how each one can contribute in the hybrid architecture to improve performance, road occupancy and passenger comfort while preserving safety. The experimental results confirm the feasibility of the approach and the practical relevance of hybrid controllers for safe and efficient driving.
Developing controllers for obstacle avoidance between polytopes is a challenging and necessary problem for navigation in a tight space. Traditional approaches can only formulate the obstacle avoidance problem as an offline optimization problem. To ad dress these challenges, we propose a duality-based safety-critical optimal control using control barrier functions for obstacle avoidance between polytopes, which can be solved in real-time with a QP-based optimization problem. A dual optimization problem is introduced to represent the minimum distance between polytopes and the Lagrangian function for the dual form is applied to construct a control barrier function. We demonstrate the proposed controller on a moving sofa problem where non-conservative maneuvers can be achieved in a tight space.
The paper considers autonomous rendezvous maneuver and proximity operations of two spacecraft in presence of obstacles. A strategy that combines guidance and control algorithms is analyzed. The proposed closed-loop system is able to guarantee a safe path in a real environment, as well as robustness with respect to external disturbances and dynamic obstacles. The guidance strategy exploits a suitably designed Artificial Potential Field (APF), while the controller relies on Sliding Mode Control (SMC), for both position and attitude tracking of the spacecraft. As for the position control, two different first order SMC methods are considered, namely the component-wise and the simplex-based control techniques. The proposed integrated guidance and control strategy is validated by extensive simulations performed with a six degree-of-freedom (DOF) orbital simulator and appears suitable for real-time control with minimal on-board computational effort. Fuel consumption and control effort are evaluated, including different update frequencies of the closed-loop software.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا