ﻻ يوجد ملخص باللغة العربية
Let $IA_n$ denote the group of $IA$-automorphisms of a free group of rank $n$, and let $mathcal I_n^b$ denote the Torelli subgroup of the mapping class group of an orientable surface of genus $n$ with $b$ boundary components, $b=0,1$. In 1935 Magnus proved that $IA_n$ is finitely generated for all $n$, and in 1983 Johnson proved that $mathcal I_n^b$ is finitely generated for $ngeq 3$. It was recently shown that for each $kinmathbb N$, the $k^{rm th}$ terms of the lower central series $gamma_k IA_n$ and $gamma_kmathcal I_n^b$ are finitely generated when $n>>k$; however, no information about finite generating sets was known for $k>1$. The main goal of this paper is to construct an explicit finite generating set for $gamma_2 IA_n = [IA_n,IA_n]$ and almost explicit finite generating sets for $gamma_2mathcal I_n^b$ and the Johnson kernel, which contains $gamma_2mathcal I_n^b$ as a finite index subgroup.
When studying subgroups of $Out(F_n)$, one often replaces a given subgroup $H$ with one of its finite index subgroups $H_0$ so that virtual properties of $H$ become actual properties of $H_0$. In many cases, the finite index subgroup is $H_0 = H cap
We prove that the profinite completion of the fundamental group of a compact 3-manifold $M$ satisfies a Tits alternative: if a closed subgroup $H$ does not contain a free pro-$p$ subgroup for any $p$, then $H$ is virtually soluble, and furthermore of
Let $C(Gamma)$ be the set of isomorphism classes of the finite groups that are homomorphic images of $Gamma$. We investigate the extent to which $C(Gamma)$ determines $Gamma$ when $Gamma$ is a group of geometric interest. If $Gamma_1$ is a lattice in
This paper addresses questions of quasi-isometric rigidity and classification for fundamental groups of finite graphs of groups, under the assumption that the Bass-Serre tree of the graph of groups has finite depth. The main example of a finite depth
In this paper we prove that the unitary groups $SU_n(q^2)$ are $(2,3)$-generated for any prime power $q$ and any integer $ngeq 8$. By previous results this implies that, if $ngeq 3$, the groups $SU_n(q^2)$ and $PSU_n(q^2)$ are $(2,3)$-generated, exce