ترغب بنشر مسار تعليمي؟ اضغط هنا

Hidden spin-isospin exchange symmetry

171   0   0.0 ( 0 )
 نشر من قبل Dean Lee J
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The strong interactions among nucleons have an approximate spin-isospin exchange symmetry that arises from the properties of quantum chromodynamics in the limit of many colors, $N_c$. However this large-$N_c$ symmetry is well hidden and reveals itself only when averaging over intrinsic spin orientations. Furthermore, the symmetry is obscured unless the momentum resolution scale is close to an optimal scale that we call $Lambda_{{rm large-}N_c}$. We show that the large-$N_c$ derivation requires a momentum resolution scale of $Lambda_{{rm large-}N_c} sim 500$ MeV. We derive a set of spin-isospin exchange sum rules and discuss implications for the spectrum of $^{30}$P and applications to nuclear forces, nuclear structure calculations, and three-nucleon interactions.



قيم البحث

اقرأ أيضاً

We discuss weakly bound states of a few-fermion system having spin-isospin symmetry. This corresponds to the nuclear physics case in which the singlet, $a_0$, and triplet, $a_1$, $n-p$ scattering lengths are large with respect to the range of the nuc lear interaction. The ratio of the two is about $a_0/a_1approx-4.31$. This value defines a plane in which $a_0$ and $a_1$ can be varied up to the unitary limit, $1/a_0=0$ and $1/a_1=0$, maintaining its ratio fixed. Using a spin dependant potential model we estimate the three-nucleon binding energy along that plane. This analysis can be considered an extension of the Efimov plot for three bosons to the case of three $1/2$-spin-isospin fermions.
The decomposition of nuclear symmetry energy into spin and isospin components is discussed to elucidate the underlying properties of the NN bare interaction. This investigation was carried out in the framework of the Brueckner-Hartree-Fock theory of asymmetric nuclear matter with consistent two and three body forces. It is shown the interplay among the various two body channels in terms of isospin singlet and triplet components as well as spin singlet and triplet ones. The broad range of baryon densities enables to study the effects of three body force moving from low to high densities.
Projection Monte Carlo calculations of lattice Chiral Effective Field Theory suffer from sign oscillations to a varying degree dependent on the number of protons and neutrons. Hence, such studies have hitherto been concentrated on nuclei with equal n umbers of protons and neutrons, and especially on the alpha nuclei where the sign oscillations are smallest. Here, we introduce the symmetry-sign extrapolation method, which allows us to use the approximate Wigner SU(4) symmetry of the nuclear interaction to systematically extend the Projection Monte Carlo calculations to nuclear systems where the sign problem is severe. We benchmark this method by calculating the ground-state energies of the $^{12}$C, $^6$He and $^6$Be nuclei, and discuss its potential for studies of neutron-rich halo nuclei and asymmetric nuclear matter.
We present lattice calculations of the low-lying spectrum of $^{12}$C using a simple nucleon-nucleon interaction that is independent of spin and isospin and therefore invariant under Wigners SU(4) symmetry. We find strong signals for all excited stat es up to $sim 15$~MeV above the ground state, and explore the structure of each state using a large variety of $alpha$ cluster and harmonic oscillator trial states, projected onto given irreducible representations of the cubic group. We are able to verify earlier findings for the $alpha$ clustering in the Hoyle state and the second $2^+$ state of $^{12}$C. The success of these calculations to describe the full low-lying energy spectrum using spin-independent interactions suggest that either the spin-orbit interactions are somewhat weak in the $^{12}$C system, or the effects of $alpha$ clustering are diminishing their influence. This is in agreement with previous findings from {it ab initio} shell model calculations.
We project onto the light-front the pions Poincare-covariant Bethe-Salpeter wave-function, obtained using two different approximations to the kernels of QCDs Dyson-Schwinger equations. At an hadronic scale both computed results are concave and signif icantly broader than the asymptotic distribution amplitude, phi_pi^{asy}(x)=6 x(1-x); e.g., the integral of phi_pi(x)/phi_pi^{asy}(x) is 1.8 using the simplest kernel and 1.5 with the more sophisticated kernel. Independent of the kernels, the emergent phenomenon of dynamical chiral symmetry breaking is responsible for hardening the amplitude.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا