ﻻ يوجد ملخص باللغة العربية
In string theory, the simultaneous existence of many Axion-Like Particles (ALPs) are suggested over a vast mass range, and a variety of potentials have been developed in the context of inflation. In such potentials shallower than quadratic, the prominent instability can produce localized dense objects, oscillons. Because of the approximate conservation of their adiabatic invariant, oscillons generally survive quite long, maybe up to the current age of the universe in the case of ultra-light ALPs with $m sim 10^{-22} {rm eV}$. Such oscillons can have significant effects on the evolution of the recent universe. In this paper, we investigate the oscillons of the pure-natural type potential by classical lattice simulation to explore the key quantities necessary for phenomenological application: the number density of oscillons, the oscillon mass distribution, the energy ratio of oscillons to the ALP field, and the power spectrum. Then, we evolve these values in consideration of the analytic decay rate.
Ultra-Light Axion-like Particle (ULAP) is motivated as one of the solutions to the small scale problems in astrophysics. When such a scalar particle oscillates with an $mathcal{O}(1)$ amplitude in a potential shallower than quadratic, it can form a l
We investigate the bursts of electromagnetic and scalar radiation resulting from the collision, and merger of oscillons made from axion-like particles using 3+1 dimensional lattice simulations of the coupled axion-gauge field system. The radiation in
Ultra-light axion-like particle (ULAP) is one of attractive candidates for cold dark matter. Because the de Broglie wavelength of ULAP with mass $sim 10^{-22} {rm eV}$ is $mathcal{O}({rm kpc})$, the suppression of the small scale structure by the unc
Axions arise in many theoretical extensions of the Standard Model of particle physics, in particular the string axiverse. If the axion masses, $m_a$, and (effective) decay constants, $f_a$, lie in specific ranges, then axions contribute to the cosmol
Cosmological observations are used to test for imprints of an ultra-light axion-like field (ULA), with a range of potentials $V(phi)propto[1-cos(phi/f)]^n$ set by the axion-field value $phi$ and decay constant $f$. Scalar field dynamics dictate that