ﻻ يوجد ملخص باللغة العربية
We study the graphs formed from instances of the stable matching problem by connecting pairs of elements with an edge when there exists a stable matching in which they are matched. Our results include the NP-completeness of recognizing these graphs, an exact recognition algorithm that is singly exponential in the number of edges of the given graph, and an algorithm whose time is linear in the number of vertices of the graph but exponential in a polynomial of its carving width. We also provide characterizations of graphs of stably matchable pairs that belong to certain classes of graphs, and of the lattices of stable matchings that can have graphs in these classes.
We prove that if $G$ is a sparse graph --- it belongs to a fixed class of bounded expansion $mathcal{C}$ --- and $din mathbb{N}$ is fixed, then the $d$th power of $G$ can be partitioned into cliques so that contracting each of these clique to a singl
The class of all even-hole-free graphs has unbounded tree-width, as it contains all complete graphs. Recently, a class of (even-hole, $K_4$)-free graphs was constructed, that still has unbounded tree-width [Sintiari and Trotignon, 2019]. The class ha
A conflict-free k-coloring of a graph assigns one of k different colors to some of the vertices such that, for every vertex v, there is a color that is assigned to exactly one vertex among v and vs neighbors. Such colorings have applications in wirel
We consider the NP-complete problem of tracking paths in a graph, first introduced by Banik et. al. [3]. Given an undirected graph with a source $s$ and a destination $t$, find the smallest subset of vertices whose intersection with any $s-t$ path re
Power domination in graphs emerged from the problem of monitoring an electrical system by placing as few measurement devices in the system as possible. It corresponds to a variant of domination that includes the possibility of propagation. For measur