ﻻ يوجد ملخص باللغة العربية
We do three things in this paper: (1) study the analog of localization sequences (in the sense of algebraic $K$-theory of stable $infty$-categories) for additive $infty$-categories, (2) define the notion of nilpotent extensions for suitable $infty$-categories and furnish interesting examples such as categorical square-zero extensions, and (3) use (1) and (2) to extend the Dundas-Goodwillie-McCarthy theorem for stable $infty$-categories which are not monogenically generated (such as the stable $infty$-category of Voevodskys motives or the stable $infty$-category of perfect complexes on some algebraic stacks). The key input in our paper is Bondarkos notion of weight structures which provides a ring-with-many-objects analog of a connective $mathbb{E}_1$-ring spectrum. As applications, we prove cdh descent results for truncating invariants of stacks extending the work of Hoyois-Krishna for homotopy $K$-theory, and establish new cases of Blancs lattice conjecture.
We define the Chow $t$-structure on the $infty$-category of motivic spectra $SH(k)$ over an arbitrary base field $k$. We identify the heart of this $t$-structure $SH(k)^{cheartsuit}$ when the exponential characteristic of $k$ is inverted. Restricting
We prove that for a quasi-regular semiperfectoid $mathbb{Z}_p^{rm cycl}$-algebra $R$ (in the sense of Bhatt-Morrow-Scholze), the cyclotomic trace map from the $p$-completed $K$-theory spectrum $K(R;mathbb{Z}_p)$ of $R$ to the topological cyclic homol
We prove a version of J.P. Mays theorem on the additivity of traces, in symmetric monoidal stable $infty$-categories. Our proof proceeds via a categorification, namely we use the additivity of topological Hochschild homology as an invariant of stable
We define Grothendieck-Witt spectra in the setting of Poincare $infty$-categories and show that they fit into an extension with a L- and an L-theoretic part. As consequences we deduce localisation sequences for Verdier quotients, and generalisations
We show that an old conjecture of A.A. Suslin characterizing the image of a Hurewicz map from Quillen K-theory in degree $n$ to Milnor K-theory in degree $n$ admits an interpretation in terms of unstable ${mathbb A}^1$-homotopy sheaves of the general