ترغب بنشر مسار تعليمي؟ اضغط هنا

First-principles computation of boron-nitride-based ultrathin UV-C light emitting diodes

59   0   0.0 ( 0 )
 نشر من قبل Jinying Wang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Short wavelength ultraviolet (UV-C) light deactivates DNA of any germs, including multiresistive bacteria and viruses like COVID-19. Two-dimensional (2D) material-based UV-C light emitting diodes can potentially be integrated into arbitrary surfaces to allow for shadow-free surface disinfection. In this work, we perform a series of first-principles calculations to identify the core components of ultrathin LEDs based on hexagonal boron nitride (hBN). The electrons and holes are predicted to be confined in multiple quantum wells (MQWs) by combining hBN layers with different stacking orders. Various p- and n-doping candidates for hBN are assessed, and the relative p- and n-type metal contacts with low Schottky barrier heights are identified. The findings are summarized in a concrete UV-C LED structure proposal.

قيم البحث

اقرأ أيضاً

This article presents the use of flexible carbon substrates for the growth of III-nitride nanowire light emitters. A dense packing of gallium nitride nanowires were grown on a carbon paper substrate. The nanowires grew predominantly along the a-plane direction, normal to the local surface of the carbon paper. Strong photo- and electro-luminescence was observed from InGaN quantum well light emitting diode nanowires.
Solution-processed planar perovskite light-emitting diodes (LEDs) promise high-performance and cost-effective electroluminescent (EL) devices ideal for large-area display and lighting applications. Exploiting emission layers with high ratios of horiz ontal transition dipole moments (TDMs) is expected to boost photon outcoupling of planar LEDs. However, LEDs based on anisotropic perovskite nanoemitters remains to be inefficient (external quantum efficiency, EQE <5%), due to the difficulties of simultaneously controlling the orientations of TDMs, achieving high photoluminescence quantum yields (PLQYs) and realizing charge balance in the films of the assembled nanostructures. Here we demonstrate efficient EL from an in-situ grown continuous perovskite film comprising of a monolayer of face-on oriented nanoplatelets. The ratio of horizontal TDMs of the perovskite nanoplatelet films is ~84%, substantially higher than that of isotropic emitters (67%). The nanoplatelet film shows a high PLQY of ~75%. These merits enable LEDs with a peak EQE of 23.6%, representing the most efficient perovskite LEDs.
The radiative recombination of injected charge carriers gives rise to electroluminescence (EL), a central process for light-emitting diode (LED) operation. It is often presumed in some emerging fields of optoelectronics, including perovskite and orga nic LEDs, that the minimum voltage required for light emission is the semiconductor bandgap divided by the elementary charge. Here we show for many classes of LEDs, including those based on metal halide perovskite, organic, chalcogenide quantum-dot and commercial III-V semiconductors, photon emission can be generally observed at record-low driving voltages of 36%-60% of their bandgaps, corresponding to a large apparent energy gain of 0.6-1.4 eV per emitted photon. Importantly, for various classes of LEDs with very different modes of charge injection and recombination (dark saturation current densities ranging from ~10^-35 to ~10^-21 mA/cm2), their EL intensity-voltage curves under low voltages exhibit similar behaviors, revealing a universal origin of ultralow-voltage device operation. Finally, we demonstrate as a proof-of-concept that perovskite LEDs can transmit data efficiently to a silicon detector at 1V, a voltage below the silicon bandgap. Our work provides a fresh insight into the operational limits of electroluminescent diodes, highlighting the significant potential of integrating low-voltage LEDs with silicon electronics for next-generation communications and computational applications.
Carbene-metal-amide type photoemitters based on CF$_3$-substituted carbazolate ligands show sky-blue to deep-blue photoluminescence from charge-transfer excited states. They are suitable for incorporation into organic light-emitting diodes (OLEDs) by thermal vapour deposition techniques, either embedded within a high-triplet-energy host, or used host-free. We report high-efficiency OLEDs with emission ranging from yellow to blue (Commission Internationale de lEclairage (CIE) coordinates from [0.35, 0.53] to [0.17, 0.17]). The latter show a peak electroluminescence external quantum efficiency (EQE) of 20.9 $%$ in a polar host. We observe that the relative energies of CT and $^{3}$LE states influence the performance of deep-blue emission from carbene-metal-amide materials. We report prototype host-free blue devices with peak external quantum efficiency of 17.3 $%$, which maintain high performance at brightness levels of 100 cd m$^{-2}$.
Light-emitting diodes (LEDs) based on III-V/II-VI materials have delivered a compelling performance in the mid-infrared (mid-IR) region, which enabled wide-ranging applications, including environmental monitoring, defense and medical diagnostics. Con tinued efforts are underway to realize on-chip sensors via heterogeneous integration of mid-IR emitters on a silicon photonic chip. But the uptake of such approach is limited by the high costs and interfacial strains, associated with the process of heterogeneous integrations. Here, the black phosphorus (BP)-based van der Waals (vdW) heterostructures are exploited as room temperature LEDs. The demonstrated devices can emit linearly polarized light, and their spectra cover the technologically important mid-IR atmospheric window (3-4 um). Additionally, the BP LEDs exhibit fast modulation speed as well as exceptional stability, and its peak extrinsic quantum efficiency (QE~0.9%) is comparable to the III-V/II-VI mid-IR LEDs. By leveraging the integrability of vdW heterostructures, we further demonstrate a silicon photonic waveguide-integrated BP LED. The reported hybrid platform holds great promise for mid-IR silicon photonics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا