ترغب بنشر مسار تعليمي؟ اضغط هنا

A Grid-based Representation for Human Action Recognition

62   0   0.0 ( 0 )
 نشر من قبل Soufiane Lamghari
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Human action recognition (HAR) in videos is a fundamental research topic in computer vision. It consists mainly in understanding actions performed by humans based on a sequence of visual observations. In recent years, HAR have witnessed significant progress, especially with the emergence of deep learning models. However, most of existing approaches for action recognition rely on information that is not always relevant for this task, and are limited in the way they fuse the temporal information. In this paper, we propose a novel method for human action recognition that encodes efficiently the most discriminative appearance information of an action with explicit attention on representative pose features, into a new compact grid representation. Our GRAR (Grid-based Representation for Action Recognition) method is tested on several benchmark datasets demonstrating that our model can accurately recognize human actions, despite intra-class appearance variations and occlusion challenges.



قيم البحث

اقرأ أيضاً

Skeleton-based human action recognition has attracted great interest thanks to the easy accessibility of the human skeleton data. Recently, there is a trend of using very deep feedforward neural networks to model the 3D coordinates of joints without considering the computational efficiency. In this paper, we propose a simple yet effective semantics-guided neural network (SGN) for skeleton-based action recognition. We explicitly introduce the high level semantics of joints (joint type and frame index) into the network to enhance the feature representation capability. In addition, we exploit the relationship of joints hierarchically through two modules, i.e., a joint-level module for modeling the correlations of joints in the same frame and a framelevel module for modeling the dependencies of frames by taking the joints in the same frame as a whole. A strong baseline is proposed to facilitate the study of this field. With an order of magnitude smaller model size than most previous works, SGN achieves the state-of-the-art performance on the NTU60, NTU120, and SYSU datasets. The source code is available at https://github.com/microsoft/SGN.
For action recognition learning, 2D CNN-based methods are efficient but may yield redundant features due to applying the same 2D convolution kernel to each frame. Recent efforts attempt to capture motion information by establishing inter-frame connec tions while still suffering the limited temporal receptive field or high latency. Moreover, the feature enhancement is often only performed by channel or space dimension in action recognition. To address these issues, we first devise a Channel-wise Motion Enhancement (CME) module to adaptively emphasize the channels related to dynamic information with a channel-wise gate vector. The channel gates generated by CME incorporate the information from all the other frames in the video. We further propose a Spatial-wise Motion Enhancement (SME) module to focus on the regions with the critical target in motion, according to the point-to-point similarity between adjacent feature maps. The intuition is that the change of background is typically slower than the motion area. Both CME and SME have clear physical meaning in capturing action clues. By integrating the two modules into the off-the-shelf 2D network, we finally obtain a Comprehensive Motion Representation (CMR) learning method for action recognition, which achieves competitive performance on Something-Something V1 & V2 and Kinetics-400. On the temporal reasoning datasets Something-Something V1 and V2, our method outperforms the current state-of-the-art by 2.3% and 1.9% when using 16 frames as input, respectively.
We propose a new spatio-temporal attention based mechanism for human action recognition able to automatically attend to the hands most involved into the studied action and detect the most discriminative moments in an action. Attention is handled in a recurrent manner employing Recurrent Neural Network (RNN) and is fully-differentiable. In contrast to standard soft-attention based mechanisms, our approach does not use the hidden RNN state as input to the attention model. Instead, attention distributions are extracted using external information: human articulated pose. We performed an extensive ablation study to show the strengths of this approach and we particularly studied the conditioning aspect of the attention mechanism. We evaluate the method on the largest currently available human action recognition dataset, NTU-RGB+D, and report state-of-the-art results. Other advantages of our model are certain aspects of explanability, as the spatial and temporal attention distributions at test time allow to study and verify on which parts of the input data the method focuses.
Human action recognition from skeleton data, fueled by the Graph Convolutional Network (GCN), has attracted lots of attention, due to its powerful capability of modeling non-Euclidean structure data. However, many existing GCN methods provide a pre-d efined graph and fix it through the entire network, which can loss implicit joint correlations. Besides, the mainstream spectral GCN is approximated by one-order hop, thus higher-order connections are not well involved. Therefore, huge efforts are required to explore a better GCN architecture. To address these problems, we turn to Neural Architecture Search (NAS) and propose the first automatically designed GCN for skeleton-based action recognition. Specifically, we enrich the search space by providing multiple dynamic graph modules after fully exploring the spatial-temporal correlations between nodes. Besides, we introduce multiple-hop modules and expect to break the limitation of representational capacity caused by one-order approximation. Moreover, a sampling- and memory-efficient evolution strategy is proposed to search an optimal architecture for this task. The resulted architecture proves the effectiveness of the higher-order approximation and the dynamic graph modeling mechanism with temporal interactions, which is barely discussed before. To evaluate the performance of the searched model, we conduct extensive experiments on two very large scaled datasets and the results show that our model gets the state-of-the-art results.
We address human action recognition from multi-modal video data involving articulated pose and RGB frames and propose a two-stream approach. The pose stream is processed with a convolutional model taking as input a 3D tensor holding data from a sub-s equence. A specific joint ordering, which respects the topology of the human body, ensures that different convolutional layers correspond to meaningful levels of abstraction. The raw RGB stream is handled by a spatio-temporal soft-attention mechanism conditioned on features from the pose network. An LSTM network receives input from a set of image locations at each instant. A trainable glimpse sensor extracts features on a set of predefined locations specified by the pose stream, namely the 4 hands of the two people involved in the activity. Appearance features give important cues on hand motion and on objects held in each hand. We show that it is of high interest to shift the attention to different hands at different time steps depending on the activity itself. Finally a temporal attention mechanism learns how to fuse LSTM features over time. We evaluate the method on 3 datasets. State-of-the-art results are achieved on the largest dataset for human activity recognition, namely NTU-RGB+D, as well as on the SBU Kinect Interaction dataset. Performance close to state-of-the-art is achieved on the smaller MSR Daily Activity 3D dataset.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا