ترغب بنشر مسار تعليمي؟ اضغط هنا

Active star formation across the whole Large Magellanic Cloud triggered by tidally-driven colliding HI flows

407   0   0.0 ( 0 )
 نشر من قبل Kisetsu Tsuge
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The galactic tidal interaction is a possible mechanism to trigger the active star formation in galaxies. Recent analyses using the Hi data in the Large Magellanic Cloud (LMC) proposed that the tidally driven colliding HI flows, induced by the galactic interaction with the Small Magellanic Cloud (SMC), triggered high-mass star formation in the southeastern HI Ridge, including R136 and $sim$400 O/WR stars, and the galactic center region hosting the N44 region. This study performed a comprehensive HI data analysis across the LMC and found that two Hi velocity components defined in the early studies (L- and D- components) are quasi-ubiquitous with signatures of interaction dynamically toward the other prominent HII regions, such as N11 and N79. We characterize the intimidate velocity range (I-component) between the two components as the decelerated gas by momentum conservation in the collisional interaction. The spatial distributions of the I-component and those of the O/WR stars have good agreements with each other whose fraction is more than $sim$70% at a scale of $sim$15 pc, which is significantly smaller than the typical GMC size. Based on the results of our new simulations of the LMC-SMC interaction, we propose that the interaction about 0.2 Gyr ago induced efficient infall of gas from the SMC to the LMC and consequently ended up with recent formation of high-mass stars due to collisions of HI gas in the LMC. The new numerical simulations of the gas dynamics successfully reproduce the current distribution of the L-component. This lends theoretical support for the present picture.

قيم البحث

اقرأ أيضاً

148 - K. Tsuge , H. Sano , K. Tachihara 2018
N44 is the second active site of high mass star formation next to R136 in the Large Magellanic Cloud (LMC). We carried out a detailed analysis of HI at 60 arcsec resolution by using the ATCA & Parkes data. We presented decomposition of the HI emissio n into two velocity components (the L- and D-components) with the velocity separation of 60 km s$^{-1}$. In addition, we newly defined the I-component whose velocity is intermediate between the L- and D-components. The D-component was used to derive the rotation curve of the LMC disk, which is consistent with the stellar rotation curve (Alves et al. 2000). Toward the active cluster forming region of LHA 120-N 44, the three velocity components of HI gas show signatures of dynamical interaction including bridges and complementary spatial distributions. We hypothesize that the L- and D-components have been colliding with each other since 5 Myrs ago and the interaction triggered formation of the O and early B stars ionizing N44. In the hypothesis the I-component is interpreted as decelerated gas in terms of momentum exchange in the collisional interaction of the L- and D-components. In the N44 region the Planck sub-mm dust optical depth is correlated with the HI intensity, which is well approximated by a linear regression. We found that the N44 region shows a significantly steeper regression line than in the Bar region indicating less dust abundance in the N44 region, which is ascribed to the tidal interaction between the LMC with the SMC 0.2 Gyrs ago.
Understanding of massive cluster formation is one of the important issues of astronomy. By analyzing the HI data, we have identified that the two HI velocity components (L- and D-components) are colliding toward the HI Ridge, in the southeastern end of the LMC, which hosts the young massive cluster R136 and $sim$400 O/WR stars (Doran et al. 2013) including the progenitor of SN1987A. The collision is possibly evidenced by bridge features connecting the two HI components and complementary distributions between them. We frame a hypothesis that the collision triggered the formation of R136 and the surrounding high-mass stars as well as the HI & Molecular Ridge. Fujimoto & Noguchi (1990) advocated that the last tidal interaction between the LMC and the SMC about 0.2 Gyr ago induced collision of the L- and D-components. This model is consistent with numerical simulations (Bekki & Chiba 2007b). We suggest that a dense HI partly CO cloud of 10$^{6}$ $M_{odot}$, a precursor of R136, was formed at the shock-compressed interface between the colliding L- and D-components. We suggest that part of the low-metalicity gas from the SMC was mixed in the tidal interaction based on the $Planck/IRAS$ data of dust optical depth (Planck Collaboration et al. 2014).
99 - Y. Fukui , T. Ohno , K. Tsuge 2020
NGC 602 is an outstanding young open cluster in the Small Magellanic Cloud. We have analyzed the new HI data taken with the Galactic Australian Square Kilometre Array Pathfinder survey project at an angular resolution of 30. The results show that the re are three velocity components in the NGC 602 region. We found that two of them having ~20 km s$^{-1}$ velocity separation show complementary spatial distribution with a displacement of 147 pc. We present a scenario that the two clouds collided with each other and triggered the formation of NGC 602 and eleven O stars. The average time scale of the collision is estimated to be ~8 Myr, while the collision may have continued over a few Myr. The red shifted HI cloud extending ~500 pc flows possibly to the Magellanic Bridge, which was driven by the close encounter with the Large Magellanic Cloud 200 Myr ago (Fujimoto & Noguchi 1990; Muller & Bekki 2007). Along with the RMC136 and LHA 120-N 44 regions the present results lend support for that the galaxy interaction played a role in forming high-mass stars and clusters.
79 - T. Ohno , Y. Fukui , K. Tsuge 2020
LHA 115-N 83 (N83) and LHA 115-N 84 (N84) are HII regions associated with the early stage of star formation located in the Small Magellanic Cloud (SMC). We have analyzed the new HI data taken with the Galactic Australian Square Kilometre Array Pathfi nder survey project at a high angular resolution of 30. We found that the two clouds, having $sim$40 km s$^{-1}$ velocity separation, show complementary distribution with each other, and part of the HI gas is dispersed by the ionization. In addition, the Atacama Large Millimeter/submillimeter Array observations revealed clumpy CO clouds of 10$^{5}$ $M_{odot}$ in total over an extent of 100 pc, which are also well correlated with the HII regions. There is a hint of displacement between the two complementary components, which indicate that the red-shifted HI cloud is moving from the north to the south by $sim$100 pc. This motion is similar to what is found in NGC 602 (Fukui et al. 2020), suggesting a large scale systematic gas flow. We frame a scenario that the two components collided with each other and triggered the formation of N83, N84, and six O-type stars around them in a time scale of a few Myr ($sim$60 pc / 40 km s$^{-1}$). The supersonic motion compressed the HI gas to form the CO clouds in the red-shifted HI cloud, some of which are forming O-type stars ionizing the HII regions in the last Myr. The red-shifted HI cloud probably flows to the direction of the Magellanic Bridge. The velocity field originated by the close encounter of the SMC with the Large Magellanic Cloud 200 Myr ago as proposed by Fujimoto & Noguchi (1990).
We have carried out 13CO(J=2-1) observations of the active star-forming region N159 West in the LMC with ALMA. We have found that the CO distribution at a sub-pc scale is highly elongated with a small width. These elongated clouds called filaments sh ow straight or curved distributions with a typical width of 0.5-1.0pc and a length of 5-10pc. All the known infrared YSOs are located toward the filaments. We have found broad CO wings of two molecular outflows toward young high-mass stars in N159W-N and N159W-S, whose dynamical timescale is ~10^4 yrs. This is the first discovery of protostellar outflow in external galaxies. For N159W-S which is located toward an intersection of two filaments we set up a hypothesis that the two filaments collided with each other ~10^5 yrs ago and triggered formation of the high-mass star having ~37 Mo. The colliding clouds show significant enhancement in linewidth in the intersection, suggesting excitation of turbulence in the shocked interface layer between them as is consistent with the magneto-hydro-dynamical numerical simulations (Inoue & Fukui 2013). This turbulence increases the mass accretion rate to ~6x10^-4 Mo yr^-1, which is required to overcome the stellar feedback to form the high-mass star.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا