ترغب بنشر مسار تعليمي؟ اضغط هنا

Weak-basis invariants and CP conservation in the leptonic sector with Majorana neutrinos

98   0   0.0 ( 0 )
 نشر من قبل Bingrong Yu
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this talk, we present a recent investigation of the sufficient and necessary conditions for CP conservation in the leptonic sector with massive Majorana neutrinos in terms of CP-odd weak-basis invariants. The number of weak-basis invariants to guarantee CP conservation in the leptonic sector is clarified and a new set of invariants are advocated for the description of CP conservation, given the physical parameters in their experimentally allowed regions.



قيم البحث

اقرأ أيضاً

In the present paper, we carry out a systematic study of the flavor invariants and their renormalization-group equations (RGEs) in the leptonic sector with three generations of charged leptons and massive Majorana neutrinos. First, following the appr oach of the Hilbert series from the invariant theory, we show that there are 34 basic flavor invariants in the generating set, among which 19 invariants are CP-even and the others are CP-odd. Any flavor invariants can be expressed as the polynomials of those 34 basic invariants in the generating set. Second, we explicitly construct all the basic invariants and derive their RGEs, which form a closed system of differential equations as they should. The numerical solutions to the RGEs of the basic flavor invariants have also been found. Furthermore, we demonstrate how to extract physical observables from the basic invariants. Our study is helpful for understanding the algebraic structure of flavor invariants in the leptonic sector, and also provides a novel way to explore leptonic flavor structures.
87 - M. N. Rebelo 2018
In this talk we present a powerful tool applied to the study of Leptonic Physics. This tool is based on the construction of Weak Basis invariant relations associated to different properties of leptonic models. The rationale behind these constructions is the fact that fermion mass matrices related through weak basis transformations look different but lead to the same physics. Such invariants can be built, for instance, with the aim to test leptonic models for different types of CP violation. These invariants are also relevant beyond such tests and have been applied to the study of implications from zero textures appearing in the leptonic mass matrices. In this case an important question is, how can a flavour model corresponding to a set of texture zeros be recognised, when written in a different weak basis, where the zeros are not explicitly present. Another important application is the construction of invariants sensitive to the neutrino mass ordering and the $theta_{23}$ octant.
We investigate the physical meaning of some of the texture zeros which appear in most of the Ansatze on leptonic masses and their mixing. It is shown that starting from arbitrary lepton mass matrices and making suitable weak basis transformations one can obtain some of these sets of zeros, which therefore have no physical content. We then analyse four-zero texture Ansatze where the charged lepton and neutrino mass matrices have the same structure. The four texture zeros cannot be obtained simultaneously through weak basis transformations, so these Ansatze do have physical content. We show that they can be separated into four classes and study the physical implications of each class.
The effective Majorana mass which determines the rate of the neutrinoless double beta decay, |<m>|, is considered in the case of three-neutrino mixing and massive Majorana neutrinos. Assuming a rather precise determination of the parameters character izing the neutrino oscillation solutions of the solar and atmospheric neutrino problems has been made, we discuss the information a measurement of |<m>| > (0.005 - 0.010) eV can provide on the value of the lightest neutrino mass and on the CP-violation in the lepton sector. The implications of combining a measurement of |<m>| with future measurement of the neutrino mass in tritium beta-decay experiments for the possible determination of leptonic CP-violation are emphasized.
73 - Kazuo Fujikawa 2020
The parity transformation law of the fermion field $psi(x)$ is usually defined by the $gamma^{0}$-parity $psi^{p}(t,-vec{x}) = gamma^{0}psi(t,-vec{x})$ with eigenvalues $pm 1$, while the $igamma^{0}$-parity $psi^{p}(t,-vec{x})=igamma^{0}psi(t,-vec{x} )$ is required for the Majorana fermion. The compatibility issues of these two parity laws arise in generic fermion number violating theories where a general class of Majorana fermions appear. In the case of Majorana neutrinos constructed from chiral neutrinos in an extension of the Standard Model, the Majorana neutrinos can be characterized by CP symmetry although C and P are separately broken. It is then shown that either choice of the parity operation, $gamma^{0}$ or $igamma^{0}$, in the level of the starting fermions gives rise to the consistent and physically equivalent descriptions of emergent Majorana neutrinos both for Weinbergs model of neutrinos and for a general class of seesaw models. The mechanism of this equivalence is that the Majorana neutrino constructed from a chiral neutrino, which satisfies the classical Majorana condition $psi(x)=Coverline{psi(x)}^{T}$, allows the phase freedom $psi(x)=e^{ialpha} u_{L}(x) + e^{-ialpha}Coverline{ u_{L}(x)}^{T}$ with $alpha=0 {rm or} pi/4$ that accounts for the phase coming from the different definitions of parity for $ u_{L}(x)$ and ensures the consistent definitions of CP symmetry $({cal CP})psi(x)({cal CP})^{dagger}= pm igamma^{0}psi(t,-vec{x})$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا