ترغب بنشر مسار تعليمي؟ اضغط هنا

New constraints on the 1.4 GHz source number counts and luminosity functions in the Lockman Hole field

73   0   0.0 ( 0 )
 نشر من قبل Matteo Bonato
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a study of the 1173 sources brighter than $S_{1.4,rm GHz}= 120,mu$Jy detected over an area of $simeq 1.4,hbox{deg}^{2}$ in the Lockman Hole field. Exploiting the multi-band information available in this field for $sim$79% of the sample, sources have been classified into radio loud (RL) active galactic nuclei (AGNs), star forming galaxies (SFGs) and radio quiet (RQ) AGNs, using a variety of diagnostics available in the literature. Exploiting the observed tight anti-correlations between IRAC band 1 or band 2 and the source redshift we could assign a redshift to 177 sources missing a spectroscopic measurement or a reliable photometric estimate. A Monte Carlo approach was used to take into account the spread around the mean relation. The derived differential number counts and luminosity functions at several redshifts of each population show a good consistency with models and with earlier estimates made using data from different surveys and applying different approaches. Our results confirm that below $sim300,mu$Jy SFGs$+$RQ AGNs overtake RL AGNs that dominate at brighter flux densities. We also confirm earlier indications of a similar evolution of RQ AGNs and SFGs. Finally, we discuss the angular correlation function of our sources and highlight its sensitivity to the criteria used for the classification.

قيم البحث

اقرأ أيضاً

We aim to study the nature of the faint, polarised radio source population whose source composition and redshift dependence contain information about the strength, morphology, and evolution of magnetic fields over cosmic timescales. We use a 15 point ing radio continuum L-band mosaic of the Lockman Hole, observed in full polarisation, generated from archival data of the WSRT. The data were analysed using the RM-Synthesis technique. We achieved a noise of 7 {mu}Jy/beam in polarised intensity, with a resolution of 15. Using infrared and optical images and source catalogues, we were able to cross-identify and determine redshifts for one third of our detected polarised sources. We detected 150 polarised sources, most of which are weakly polarised with a mean fractional polarisation of 5.4 %. With a total area of 6.5 deg^2 and a detection threshold of 6.25 {sigma} we find 23 polarised sources per deg^2. Based on our multi wavelength analysis, we find that our sample consists of AGN only. We find a discrepancy between archival number counts and those present in our data, which we attribute to sample variance. Considering the absolute radio luminosty, to distinguish weak and strong sources, we find a general trend of increased probability to detect weak sources at low redshift and strong sources at high redshift. Further, we find an anti-correlation between fractional polarisation and redshift for our strong sources sample at z{geq}0.6. A decrease in the fractional polarisation of strong sources with increasing redshift cannot be explained by a constant magnetic field and electron density over cosmic scales, however the changing properties of cluster environments over the cosmic timemay play an important role. Disentangling these two effects requires deeper and wider polarisation observations, and better models of the morphology and strength of cosmic magnetic fields.
We present very long baseline interferometry (VLBI) observations of 179 radio sources in the COSMOS field with extremely high sensitivity using the Green Bank Telescope (GBT) together with the Very Long Baseline Array (VLBA) (VLBA+GBT) at 1.4 GHz, to explore the faint radio population in the flux density regime of tens of $mu$Jy. Here, the identification of active galactic nuclei (AGN) is based on the VLBI detection of the source, i.e., it is independent of X-ray or infrared properties. The milli-arcsecond resolution provided by the VLBI technique implies that the detected sources must be compact and have large brightness temperatures, and therefore they are most likely AGN (when the host galaxy is located at z$geq$0.1). On the other hand, this technique allows us to only positively identify when a radio-active AGN is present, i.e., we cannot affirm that there is no AGN when the source is not detected. For this reason, the number of identified AGN using VLBI should be always treated as a lower limit. We present a catalogue containing the 35 radio sources detected with the VLBA+GBT, 10 of which were not previously detected using only the VLBA. We have constructed the radio source counts at 1.4 GHz using the samples of the VLBA and VLBA+GBT detected sources of the COSMOS field to determine a lower limit for the AGN contribution to the faint radio source population. We found an AGN contribution of >40-75% at flux density levels between 150 $mu$Jy and 1 mJy. This flux density range is characterised by the upturn of the Euclidean-normalised radio source counts, which implies a contribution of a new population. This result supports the idea that the sub-mJy radio population is composed of a significant fraction of radio-emitting AGN, rather than solely by star-forming galaxies, in agreement with previous studies.
We report initial results of far-infrared observations of the Lockman hole with Far-Infrared Surveyor (FIS) onboard the AKARI infrared satellite. On the basis of slow scan observations of a 0.6 deg x 1.2 deg contiguous area, we obtained source number counts at 65, 90 and 140 um down to 77, 26 and 194 mJy (3 sigma), respectively. The counts at 65 and 140 um show good agreement with the Spitzer results. However, our 90 um counts are clearly lower than the predicted counts by recent evolutionary models that fit the Spitzer counts in all the MIPS bands. Our 90 um counts above 26 mJy account for about 7% of the cosmic background. These results provide strong constraints on the evolutionary scenario and suggest that the current models may require modifications.
Brightness-weighted differential source counts $S^2 n(S)$ spanning the eight decades of flux density between $0.25,mumathrm{Jy}$ and 25 Jy at 1.4 GHz were measured from (1) the confusion brightness distribution in the MeerKAT DEEP2 image below $10,mu mathrm{Jy}$, (2) counts of DEEP2 sources between $10,mumathrm{Jy}$ and $2.5,mathrm{mJy}$, and (3) counts of NVSS sources stronger than $2.5,mathrm{mJy}$. We present our DEEP2 catalog of $1.7 times 10^4$ discrete sources complete above $S = 10,mumathrm{Jy}$ over $Omega = 1.04,mathrm{deg}^2$. The brightness-weighted counts converge as $S^2 n(S) propto S^{1/2}$ below $S = 10,mumathrm{Jy}$, so $>99%$ of the $Delta T_mathrm{b} sim 0.06,mathrm{K}$ sky brightness produced by active galactic nuclei and $approx96%$ of the $Delta T_mathrm{b} sim 0.04,mathrm{K}$ added by star-forming galaxies has been resolved into sources with $S geq 0.25,mumathrm{Jy}$. The $Delta T_mathrm{b} approx 0.4,mathrm{K}$ excess brightness measured by ARCADE 2 cannot be produced by faint sources smaller than $approx 50,mathrm{kpc}$ if they cluster like galaxies.
We exploit a sample of ultra-faint high-redshift galaxies (demagnified HST $H_{160}$ magnitude $>30$) in the Frontier Fields clusters A2744 and M0416 to constrain a theoretical model for the UV luminosity function (LF) in the presence of photoionizat ion feedback. The objects have been selected on the basis of accurate photometric redshifts computed from multi-band photometry including 7 HST bands and deep $K_s$ and IRAC observations. Magnification is computed on an object-by-object basis from all available lensing models of the two clusters. We take into account source detection completeness as a function of luminosity and size, magnification effects and systematics in the lens modeling of the clusters under investigation. We find that our sample of high-$z$ galaxies constrain the cut-off halo circular velocity below which star-formation is suppressed by photo-ionization feedback to $v_c^{rm cut} < 50$ km s$^{-1}$. This circular velocity corresponds to a halo mass of $approx5.6times10^9~M_odot$ and $approx2.3times10^9~M_odot$ at $z=5$ and 10 respectively: higher mass halos can thus sustain continuous star formation activity without being quenched by external ionizing flux. More stringent constraints are prevented by the uncertainty in the modeling of the cluster lens, as embodied by systematic differences among the lens models available.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا