ترغب بنشر مسار تعليمي؟ اضغط هنا

Ice Giant Atmospheric Science

72   0   0.0 ( 0 )
 نشر من قبل Emma Dahl
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This white paper, written in support of NASAs 2023-2032 Planetary Decadal Survey, outlines 10 major questions that focus on the origin, evolution, and current processes that shape the atmospheres of Uranus and Neptune. Prioritizing these questions over the next decade will greatly improve our understanding of this unique class of planets, which have remained largely unexplored since the Voyager flybys. Studying the atmospheres of the Ice Giants will greatly inform our understanding of the origin and evolution of the solar system as a whole, in addition to the growing number of exoplanetary systems that contain Neptune-mass planets.



قيم البحث

اقرأ أيضاً

The international planetary science community met in London in January 2020, united in the goal of realising the first dedicated robotic mission to the distant Ice Giants, Uranus and Neptune, as the only major class of Solar System planet yet to be c omprehensively explored. Ice-Giant-sized worlds appear to be a common outcome of the planet formation process, and pose unique and extreme tests of our understanding of planetary origins, exotic water-rich planetary interiors, dynamic seasonal atmospheres, complex magnetospheric configurations, geologically-rich icy satellites (both natural and captured), and delicate planetary rings. This article introduces a special issue of Philosophical Transactions of the Royal Society A on Ice Giant System exploration at the start of the 2020s. We review the scientific potential and existing mission design concepts for an ambitious international partnership for exploring Uranus and/or Neptune in the coming decades.
Atmospheric circulation patterns derived from multi-spectral remote sensing can serve as a guide for choosing a suitable entry site for a future in situ probe mission. Since the Voyager-2 flybys in the 1980s, three decades of observations from ground - and space-based observatories have generated a picture of Ice Giant circulation that is complex, perplexing, and altogether unlike that seen on the Gas Giants. This review seeks to reconcile the various competing circulation patterns from an observational perspective, accounting for spatially-resolved measurements of: zonal albedo contrasts and banded appearances; cloud-tracked zonal winds; temperature and para-H$_2$ measurements above the condensate clouds; and equator-to-pole contrasts in condensable volatiles (methane and hydrogen sulphide) in the deeper troposphere. These observations identify three distinct latitude domains: an equatorial domain of deep upwelling and upper-tropospheric subsidence, potentially bounded by peaks in the retrograde zonal jet and analogous to Jovian cyclonic belts; a mid-latitude transitional domain of upper-tropospheric upwelling, vigorous cloud activity, analogous to Jovian anticyclonic zones; and a polar domain of strong subsidence, volatile depletion, and small-scale (and potentially seasonally-variable) convective activity. Taken together, the multi-wavelength observations suggest a tiered structure of stacked circulation cells (at least two in the troposphere and one in the stratosphere), potentially separated in the vertical by (i) strong molecular weight gradients associated with cloud condensation, and by (ii) transitions from a thermally-direct circulation regime at depth to a wave-driven circulation regime at high altitude. The inferred circulation can be tested in the coming decade by 3D simulations and by observations from future world-class facilities. [Abridged]
Differential atmospheric dispersion is a wavelength-dependent effect introduced by Earths atmosphere that affects astronomical observations performed using ground-based telescopes. It is important, when observing at a zenithal angle different from ze ro, to use an Atmospheric Dispersion Corrector (ADC) to compensate this atmospheric dispersion. The design of an ADC is based on atmospheric models that, to the best of our knowledge, were never tested against on-sky measurements. We present an extensive models analysis in the wavelength range of 315-665 nm. The method we used was previously described in the paper I of this series. It is based on the use of cross-dispersion spectrographs to determine the position of the centroid of the spatial profile at each wavelength of each spectral order. The accuracy of the method is 18 mas. At this level, we are able to compare and characterize the different atmospheric dispersion models of interest. For better future ADC designs, we recommend to avoid the Zemax model, and in particular in the blue range of the spectra, when expecting residuals at the level of few tens of milli-arcseconds.
Wind is the process that connects Mars climate system. Measurements of Mars atmospheric winds from orbit would dramatically advance our understanding of Mars and help prepare for human exploration of the Red Planet. Multiple instrument candidates are in development and will be ready for flight in the next decade. We urge the Decadal Survey to make these measurements a priority for 2023-2032.
In the framework of the Europlanet-RI program, a prototype of Virtual Observatory dedicated to Planetary Science was defined. Most of the activity was dedicated to the elaboration of standards to retrieve and visualize data in this field, and to prov ide light procedures to teams who wish to contribute with on-line data services. The architecture of this VO system and selected solutions are presented here, together with existing demonstrators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا