ﻻ يوجد ملخص باللغة العربية
Magnetars are neutron stars (NSs) with extreme magnetic fields of strength $5 times 10^{13}$ - $10^{15}$ G. They exhibit transient, highly energetic events, such as short X-ray flashes, bursts and giant flares, all of which are powered by their enormous magnetic energy. Quiescent magnetars have X-ray luminosities between $10^{29}$ and $10^{35}$ erg/s, and are further classified as either persistent or transient magnetars. Their X-ray emission is modulated with the rotational period of the NS, with a typical relative amplitude (so-called pulsed fraction) between 10-58 per cent, implying that the surface temperature is significantly non-uniform despite the high thermal conductivity of the stars crust. Here, we present the first 3D magneto-thermal MHD simulations of magnetars with strong toroidal magnetic fields. We show that these models, combined with ray propagation in curved space-time, accurately describe the light-curves of most transient magnetars in quiescence and allow us to further constrain their rotational orientation. We find that the presence of a strong toroidal magnetic field explains the observed asymmetry in the surface temperature, and is the main cause of the strong modulation of thermal X-ray emission in quiescence.
A simple model of chiral asymmetry is proposed to interpret the origin of the strong toroidal magnetic field. The electrons relevant to dynamics forming the the field are in a quantume degenerate state with ultra-relativistic Fermi energy. The system
We utilize an exact quantum calculation to explore axion emission from electrons and protons in the presence of the strong magnetic field of magnetars. The axion is emitted via transitions between the Landau levels generated by the strong magnetic fi
Accreting black holes launch relativistic collimated jets, across many decades in luminosity and mass, suggesting the jet launching mechanism is universal, robust and scale-free. Theoretical models and general relativistic magnetohydrodynamic (GRMHD)
Axion-like-particles (ALPs) emitted from the core of a magnetar can convert to photons in its magnetosphere. The resulting photon flux is sensitive to the product of $(i)$ the ALP-nucleon coupling $G_{an}$ which controls the production cross section
Nowadays, the analysis of the X-ray spectra of magnetically powered neutron stars or magnetars is one of the most valuable tools to gain insight into the physical processes occurring in their interiors and magnetospheres. In particular, the magnetosp