ﻻ يوجد ملخص باللغة العربية
Existing cyber security solutions have been basically developed using knowledge-based models that often cannot trigger new cyber-attack families. With the boom of Artificial Intelligence (AI), especially Deep Learning (DL) algorithms, those security solutions have been plugged-in with AI models to discover, trace, mitigate or respond to incidents of new security events. The algorithms demand a large number of heterogeneous data sources to train and validate new security systems. This paper presents the description of new datasets, the so-called ToN_IoT, which involve federated data sources collected from telemetry datasets of IoT services, operating system datasets of Windows and Linux, and datasets of network traffic. The paper introduces the testbed and description of TON_IoT datasets for Windows operating systems. The testbed was implemented in three layers: edge, fog and cloud. The edge layer involves IoT and network devices, the fog layer contains virtual machines and gateways, and the cloud layer involves cloud services, such as data analytics, linked to the other two layers. These layers were dynamically managed using the platforms of software-Defined Network (SDN) and Network-Function Virtualization (NFV) using the VMware NSX and vCloud NFV platform. The Windows datasets were collected from audit traces of memories, processors, networks, processes and hard disks. The datasets would be used to evaluate various AI-based cyber security solutions, including intrusion detection, threat intelligence and hunting, privacy preservation and digital forensics. This is because the datasets have a wide range of recent normal and attack features and observations, as well as authentic ground truth events. The datasets can be publicly accessed from this link [1].
With the widespread of Artificial Intelligence (AI)- enabled security applications, there is a need for collecting heterogeneous and scalable data sources for effectively evaluating the performances of security applications. This paper presents the d
Artificial Intelligence has made a significant contribution to autonomous vehicles, from object detection to path planning. However, AI models require a large amount of sensitive training data and are usually computationally intensive to build. The c
There are various costs for attackers to manipulate the features of security classifiers. The costs are asymmetric across features and to the directions of changes, which cannot be precisely captured by existing cost models based on $L_p$-norm robust
Fraud (swindling money, property, or authority by fictionizing, counterfeiting, forging, or imitating things, or by feigning other persons privately) forms its threats against public security and network security. Anti-fraud is essentially the identi
Critical role of Internet of Things (IoT) in various domains like smart city, healthcare, supply chain and transportation has made them the target of malicious attacks. Past works in this area focused on centralized Intrusion Detection System (IDS),