ﻻ يوجد ملخص باللغة العربية
Spatially-resolved velocity maps at high resolutions of 1-10 pc are becoming available for many nearby AGNs in both optical/infrared atomic emission lines and sub-mm molecular lines. For the former, it has been known that a linear relationship appears to exist between the velocity of the ionized gas clouds and the distance from the nucleus in the inner ~100 pc region, where these clouds are outflowing. Here we demonstrate that, in such a case, we can actually derive the three-dimensional (3D) geometrical distribution of the clouds directly from the velocity map. Revisiting such a velocity map taken by HST for the prototypical Type 2 AGN NGC1068, we implement the visualization of the 3D distribution derived from the map, and show that this inner narrow-line region has indeed a hollow-cone structure, consistent with previous modeling results. Quite possibly, this is the outer extended part of the polar elongated dusty material seen in the recent mid-IR interferometry at pc scale. Conversely, the latter small-scale geometry is inferred to have a hollow-cone outflowing structure as the inward extension of the derived 3D distribution above. The AGN obscuring torus is argued to be the inner optically thick part of this hollow-cone outflow, and its shadowed side would probably be associated with the molecular outflow seen in certain sub-mm lines. We discuss the nature of the linear velocity field, which could be from an episodic acceleration that had occurred ~10^5 years ago.
We present a proof-of-concept study of a method to estimate the inclination angle of compact high velocity clouds (CHVCs), i.e. the angle between a CHVCs trajectory and the line-of-sight. The inclination angle is derived from the CHVCs morphology and
We present a study of the three-dimensional structure of the molecular clouds in the Galactic Centre (GC) using CO emission and OH absorption lines. Two CO isotopologue lines, $^{12}$CO ($J$=1$rightarrow$0) and $^{13}$CO ($J$=1$rightarrow$0), and fou
We surveyed the circumnuclear disk of the Seyfert galaxy NGC1068 between the frequencies 86.2 GHz and 115.6 GHz, and identified 17 different molecules. Using a time and depth dependent chemical model we reproduced the observational results, and show
Supernovae from core-collapse of massive stars drive shocks into the molecular clouds from which the stars formed. Such shocks affect future star formation from the molecular clouds, and the fast-moving, dense gas with compressed magnetic fields is a
We present a three-dimensional (3D) extinction map of the southern sky. The map covers the SkyMapper Southern Survey (SMSS) area of $sim$ 14,000 ${rm deg^{2}}$ and has spatial resolutions between 6.9 and 27 arcmin. Based on the multi-band photometry