ﻻ يوجد ملخص باللغة العربية
Progress-measure lifting algorithms for solving parity games have the best worst-case asymptotic runtime, but are limited by their asymmetric nature, and known from the work of Czerwinski et al. (2018) to be subject to a matching quasi-polynomial lower bound inherited from the combinatorics of universal trees. Parys (2019) has developed an ingenious quasi-polynomial McNaughton- Zielonka-style algorithm, and Lehtinen et al. (2019) have improved its worst-case runtime. Jurdzinski and Morvan (2020) have recently brought forward a generic attractor-based algorithm, formalizing a second class of quasi-polynomial solutions to solving parity games, which have runtime quadratic in the size of universal trees. First, we adapt the framework of iterative lifting algorithms to computing attractor-based strategies. Second, we design a symmetric lifting algorithm in this setting, in which two lifting iterations, one for each player, accelerate each other in a recursive fashion. The symmetric algorithm performs at least as well as progress-measure liftings in the worst-case, whilst bypassing their inherent asymmetric limitation. Thirdly, we argue that the behaviour of the generic attractor-based algorithm of Jurdzinski and Morvan (2020) can be reproduced by a specific deceleration of our symmetric lifting algorithm, in which some of the information collected by the algorithm is repeatedly discarded. This yields a novel interpretation of McNaughton-Zielonka-style algorithms as progress-measure lifting iterations (with deliberate set-backs), further strengthening the ties between all known quasi-polynomial algorithms to date.
In a mean-payoff parity game, one of the two players aims both to achieve a qualitative parity objective and to minimize a quantitative long-term average of payoffs (aka. mean payoff). The game is zero-sum and hence the aim of the other player is to
We consider parity games on infinite graphs where configurations are represented by control-states and integer vectors. This framework subsumes two classic game problems: parity games on vector addition systems with states (vass) and multidimensional
Partial methods play an important role in formal methods and beyond. Recently such methods were developed for parity games, where polynomial-time partial solvers decide the winners of a subset of nodes. We investigate here how effective polynomial-ti
2.5 player parity games combine the challenges posed by 2.5 player reachability games and the qualitative analysis of parity games. These two types of problems are best approached with different types of algorithms: strategy improvement algorithms fo
The synthesis of reactive systems from linear temporal logic (LTL) specifications is an important aspect in the design of reliable software and hardware. We present our adaption of the classic automata-theoretic approach to LTL synthesis, implemented