ﻻ يوجد ملخص باللغة العربية
We generalize Bestvinas notion of a $mathcal{Z}$-boundary for a group to that of a coarse $mathcal{Z}$-boundary. We show that established theorems about $mathcal{Z}$-boundaries carry over nicely to the more general theory, and that some wished-for properties of $mathcal{Z}$-boundaries become theorems when applied to coarse $mathcal{Z}$-boundaries. Most notably, the property of admitting a coarse $mathcal{Z}$-boundary is a pure quasi-isometry invariant. In the process, we streamline both new and existing definitions by introducing the notion of a model $mathcal{Z}$-geometry. In accordance with the existing theory, we also develop an equivariant version of the above -- that of a coarse $Emathcal{Z}$-boundary.
In this work we introduce a new combinatorial notion of boundary $Re C$ of an $omega$-dimensional cubing $C$. $Re C$ is defined to be the set of almost-equality classes of ultrafilters on the standard system of halfspaces of $C$, endowed with an orde
A $mathcal{Z}$-structure on a group $G$ was introduced by Bestvina in order to extend the notion of a group boundary beyond the realm of CAT(0) and hyperbolic groups. A refinement of this notion, introduced by Farrell and Lafont, includes a $G$-equiv
Bestvina introduced a $mathcal{Z}$-structure for a group $G$ to generalize the boundary of a CAT(0) or hyperbolic group. A refinement of this notion, introduced by Farrell and Lafont, includes a $G$-equivariance requirement, and is known as an $mathc
We develop a coarse notion of bundle and use it to understand the coarse geometry of group extensions and, more generally, groups acting on proper metric spaces. The results are particularly sharp for groups acting on (locally finite) trees with Abel
We show that coarse property C is preserved by finite coarse direct products. We also show that the coarse analog of Dydaks countable asymptotic dimension is equivalent to the coarse version of straight finite decomposition complexity and is therefore preserved by direct products.