ﻻ يوجد ملخص باللغة العربية
Recent advances in imaging techniques have enabled us to visualize lung tumors or nodules in early-stage cancer. However, the positions of nodules can change because of intraoperative lung deflation, and the modeling of pneumothorax-associated deformation remains a challenging issue for intraoperative tumor localization. In this study, we introduce spatial and geometric analysis methods for inflated/deflated lungs and discuss heterogeneity in pneumothorax-associated deformation. Contrast-enhanced CT images simulating intraoperative conditions were acquired from live Beagle dogs. Deformable mesh registration techniques were designed to map the surface and subsurface tissues of lung lobes. The developed framework addressed local mismatches of bronchial tree structures and achieved stable registration with a Hausdorff distance of less than 1 mm and a target registration error of less than 5 mm. Our results show that the strain of lung parenchyma was 35% higher than that of bronchi, and that subsurface deformation in the deflated lung is heterogeneous.
We propose a nonlinear registration-based model reduction procedure for rapid and reliable solution of parameterized two-dimensional steady conservation laws. This class of problems is challenging for model reduction techniques due to the presence of
We present a general -- i.e., independent of the underlying equation -- registration procedure for parameterized model order reduction. Given the spatial domain $Omega subset mathbb{R}^2$ and the manifold $mathcal{M}= { u_{mu} : mu in mathcal{P} }$ a
We propose a model reduction procedure for rapid and reliable solution of parameterized hyperbolic partial differential equations. Due to the presence of parameter-dependent shock waves and contact discontinuities, these problems are extremely challe
We propose and analyse the properties of a new class of models for the electromechanics of cardiac tissue. The set of governing equations consists of nonlinear elasticity using a viscoelastic and orthotropic exponential constitutive law (this is so f
We perform the linear stability analysis for a new model for poromechanical processes with inertia (formulated in mixed form using the solid deformation, fluid pressure, and total pressure) interacting with diffusing and reacting solutes convected in