ترغب بنشر مسار تعليمي؟ اضغط هنا

Curvature conditions for spatial isotropy

58   0   0.0 ( 0 )
 نشر من قبل Pau Amaro Seoane
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the context of mathematical cosmology, the study of necessary and sufficient conditions for a semi-Riemannian manifold to be a (generalised) Robertson-Walker space-time is important. In particular, it is a requirement for the development of initial data to reproduce or approximate the standard cosmological model. Usually these conditions involve the Einstein field equations, which change if one considers alternative theories of gravity or if the coupling matter fields change. Therefore, the derivation of conditions which do not depend on the field equations is an advantage. In this work we present a geometric derivation of such a condition. We require the existence of a unit vector field to distinguish at each point of space two (non-equal) sectional curvatures. This is equivalent for the Riemann tensor to adopt a specific form. Our geometrical approach yields a local isometry between the space and a Robertson-Walker space of the same dimension, curvature and metric tensor sign (the dimension of the largest subspace on which the metric tensor is negative definite). Remarkably, if the space is simply-connected, the isometry is global. Our result generalises the theorem that spaces of the same curvature, dimension and metric tensor sign must be locally isometric to a class of spaces that have non-constant curvature. Because we do not make any assumptions regarding field equations, matter fields or metric tensor sign, one can readily use this result to study cosmological models within alternative theories of gravity or with different matter fields.


قيم البحث

اقرأ أيضاً

167 - Xiaoxiang Chai 2021
We study harmonic maps from a 3-manifold with boundary to $mathbb{S}^1$ and prove a special case of dihedral rigidity of three dimensional cubes whose dihedral angles are $pi / 2$. Furthermore we give some applications to mapping torus hyperbolic 3-manifolds.
In this work, we first discuss the possibility that dark energy models with negative energy density values in the past can alleviate the $H_0$ tension, as well as the discrepancy with the baryon acoustic oscillation (BAO) Lyman-$alpha$ data, both whi ch prevail within the $Lambda$CDM model. We then investigate whether two minimal extensions of the $Lambda$CDM model, together or separately, can successfully realize such a scenario: (i) the spatial curvature, which, in the case of spatially closed universe, mimics a negative density source and (ii) simple-graduated dark energy (gDE), which promotes the null inertial mass density of the usual vacuum energy to an arbitrary constant--if negative, the corresponding energy density decreases with redshift similar to the phantom models, but unlike them crosses below zero at a certain redshift. We find that, when the Planck data are not included in the observational analysis, the models with simple-gDE predict interesting and some significant deviations from the $Lambda$CDM model. In particular, a spatially closed universe along with a simple-gDE of positive inertial mass density, which work in contrast to each other, results in minor improvement to the $H_0$ tension. The joint dataset, including the Planck data, presents no evidence for a deviation from spatial flatness but almost the same evidence for a cosmological constant and the simple-gDE with an inertial mass density of order $mathcal{O}(10^{-12}),rm eV^4$. The latter case predicts almost no deviation from the $Lambda$CDM model up until today--so that it results in no improvement regarding the BAO Ly-$alpha$ data--except that it slightly aggravates the $H_0$ tension. We also study via dynamical analysis the history of the Universe in the models, as the simple-gDE results in futures different than the de Sitter future of the $Lambda$CDM model.
In this paper, we consider a family of $n$-dimensional, higher-curvature theories of gravity whose action is given by a series of dimensionally extended conformal invariants. The latter correspond to higher-order generalizations of the Branson $Q$-cu rvature, which is an important notion of conformal geometry that has been recently considered in physics in different contexts. The family of theories we study here includes special cases of conformal invariant theories in even dimensions. We study different aspects of these theories and their relation to other higher-curvature theories present in the literature.
Lorentzian manifolds with parallel spinors are important objects of study in several branches of geometry, analysis and mathematical physics. Their Cauchy problem has recently been discussed by Baum, Leistner and Lischewski, who proved that the probl em locally has a unique solution up to diffeomorphisms, provided that the intial data given on a space-like hypersurface satisfy some constraint equations. In this article we provide a method to solve these constraint equations. In particular, any curve (resp. closed curve) in the moduli space of Riemannian metrics on $M$ with a parallel spinor gives rise to a solution of the constraint equations on $Mtimes (a,b)$ (resp. $Mtimes S^1$).
Let (M,g) be a compact oriented Einstein 4-manifold. Write R-plus for the part of the curvature operator of g which acts on self-dual 2-forms. We prove that if R-plus is negative definite then g is locally rigid: any other Einstein metric near to g i s isometric to it. This is a chiral generalisation of Koisos Theorem, which proves local rigidity of Einstein metrics with negative sectional curvatures. Our hypotheses are roughly one half of Koisos. Our proof uses a new variational description of Einstein 4-manifolds, as critical points of the so-called poure connection action S. The key step in the proof is that when R-plus is negative definite, the Hessian of S is strictly positive modulo gauge.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا