ﻻ يوجد ملخص باللغة العربية
We describe the action of the fundamental group of a closed Finsler surface of negative curvature on the geodesics in the universal covering in terms of a flat symplectic connection and consider the first order deformation theory about a hyperbolic metric. A construction of O.Biquard yields a family of metrics which give nontrivial deformations of the holonomy, extending the representation of the fundamental group from SL(2,R) into the group of Hamiltonian diffeomorphisms of S^1 x R, and producing an infinite-dimensional version of Teichmuller space which contains the classical one.
We state and prove a Chern-Osserman-type inequality in terms of the volume growth for complete surfaces with controlled mean curvature properly immersed in a Cartan-Hadamard manifold $N$ with sectional curvatures bounded from above by a negative quantity $K_{N}leq b<0$
Let $nge 2$ and $kge 1$ be two integers. Let $M$ be an isometrically immersed closed $n$-submanifold of co-dimension $k$ that is homotopic to a point in a complete manifold $N$, where the sectional curvature of $N$ is no more than $delta<0$. We prove
Motivated by a recent groundbreaking work of Ontaneda, we describe a sizable class of closed manifolds such that the product of each manifold in the class with the real line admits a complete metric of bounded negative sectional curvature which is an
We prove that if a closed, smooth, simply-connected 4-manifold with a circle action admits an almost non-negatively curved sequence of invariant Riemannian metrics, then it also admits a non-negatively curved Riemannian metric invariant with respect