ﻻ يوجد ملخص باللغة العربية
Interleaved Reed-Solomon codes admit efficient decoding algorithms which correct burst errors far beyond half the minimum distance in the random errors regime, e.g., by computing a common solution to the Key Equation for each Reed-Solomon code, as described by Schmidt et al. This decoder may either fail to return a codeword, or it may miscorrect to an incorrect codeword, and good upper bounds on the fraction of error matrices for which these events occur are known. The decoding algorithm immediately applies to interleaved alternant codes as well, i.e., the subfield subcodes of interleaved Reed-Solomon codes, but the fraction of decodable error matrices differs, since the error is now restricted to a subfield. In this paper, we present new general lower and upper bounds on the fraction of error matrices decodable by Schmidt et al.s decoding algorithm, thereby making it the only decoding algorithm for interleaved alternant codes for which such bounds are known.
Generalized Goppa codes are defined by a code locator set $mathcal{L}$ of polynomials and a Goppa polynomial $G(x)$. When the degree of all code locator polynomials in $mathcal{L}$ is one, generalized Goppa codes are classical Goppa codes. In this wo
Recently, Martinez-Penas and Kschischang (IEEE Trans. Inf. Theory, 2019) showed that lifted linearized Reed-Solomon codes are suitable codes for error control in multishot network coding. We show how to construct and decode lifted interleaved lineari
An efficient decoding algorithm for horizontally u-interleaved LRPC codes is proposed and analyzed. Upper bounds on the decoding failure rate and the computational complexity of the algorithm are derived. It is shown that interleaving reduces the dec
Lifted Reed-Solomon codes, a subclass of lifted affine-invariant codes, have been shown to be of high rate while preserving locality properties similar to generalized Reed-Muller codes, which they contain as subcodes. This work introduces a simple bo
A framework for linear-programming (LP) decoding of nonbinary linear codes over rings is developed. This framework facilitates linear-programming based reception for coded modulation systems which use direct modulation mapping of coded symbols. It is