ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamic detection of current-induced spin-orbit magnetic fields: a phase independent approach

379   0   0.0 ( 0 )
 نشر من قبل Lin Chen
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Current induced spin-orbit torques (SOTs) in ferromagnet/non-magnetic metal heterostructures open vast possibilities to design spintronic devices to store, process and transmit information in a simple architecture. It is a central task to search for efficient SOT-devices, and to quantify the magnitude as well as the symmetry of current-induced spin-orbit magnetic fields (SOFs). Here, we report a novel approach to determine the SOFs based on magnetization dynamics by means of time-resolved magneto-optic Kerr microscopy. A microwave current in a narrow Fe/GaAs (001) stripe generates an Oersted field as well as SOFs due to the reduced symmetry at the Fe/GaAs interface, and excites standing spin wave (SSW) modes because of the lateral confinement. Due to their different symmetries, the SOFs and the Oersted field generate distinctly different mode patterns. Thus it is possible to determine the magnitude of the SOFs from an analysis of the shape of the SSW patterns. Specifically, this method, which is conceptually different from previous approaches based on lineshape analysis, is phase independent and self-calibrated. It can be used to measure the current induced SOFs in other material systems, e.g., ferromagnetic metal/non-magnetic metal heterostructures.

قيم البحث

اقرأ أيضاً

We investigate the vortex excitations induced by a spin-polarized current in a magnetic nanopillar by means of micromagnetic simulations and analytical calculations. Damped motion, stationary vortex rotation and the switching of the vortex core are s uccessively observed for increasing values of the current. We demonstrate that even for small amplitude of the vortex motion, the analytical description based the classical Thiele approach can yield quantitatively and qualitatively unsound results. We suggest and validate a new analytical technique based on the calculation of the energy dissipation.
Motivated by the importance of understanding competing mechanisms to current-induced spin-orbit torque in complex magnets, we develop a unified theory of current-induced spin-orbital coupled dynamics. The theory describes angular momentum transfer be tween different degrees of freedom in solids, e.g., the electron orbital and spin, the crystal lattice, and the magnetic order parameter. Based on the continuity equations for the spin and orbital angular momenta, we derive equations of motion that relate spin and orbital current fluxes and torques describing the transfer of angular momentum between different degrees of freedom. We then propose a classification scheme for the mechanisms of the current-induced torque in magnetic bilayers. Based on our first-principles implementation, we apply our formalism to two different magnetic bilayers, Fe/W(110) and Ni/W(110), which are chosen such that the orbital and spin Hall effects in W have opposite sign and the resulting spin- and orbital-mediated torques can compete with each other. We find that while the spin torque arising from the spin Hall effect of W is the dominant mechanism of the current-induced torque in Fe/W(110), the dominant mechanism in Ni/W(110) is the orbital torque originating in the orbital Hall effect of W. It leads to negative and positive effective spin Hall angles, respectively, which can be directly identified in experiments. This clearly demonstrates that our formalism is ideal for studying the angular momentum transfer dynamics in spin-orbit coupled systems as it goes beyond the spin current picture by naturally incorporating the spin and orbital degrees of freedom on an equal footing. Our calculations reveal that, in addition to the spin and orbital torque, other contributions such as the interfacial torque and self-induced anomalous torque within the ferromagnet are not negligible in both material systems.
The existence of spin-currents in absence of any driving external fields is commonly considered an exotic phenomenon appearing only in quantum materials, such as topological insulators. We demonstrate instead that equilibrium spin currents are a rath er general property of materials with non negligible spin-orbit coupling (SOC). Equilibrium spin currents can be present at the surfaces of a slab. Yet, we also propose the existence of global equilibrium spin currents, which are net bulk spin-currents along specific crystallographic directions of materials. Equilibrium spin currents are allowed by symmetry in a very broad class of systems having gyrotropic point groups. The physics behind equilibrium spin currents is uncovered by making an analogy between electronic systems with SOC and non-Abelian gauge theories. The electron spin can be seen as the analogous of the color degree of freedom and equilibrium spin currents can then be identified with diamagnetic color currents appearing as the response to an effective non-Abelian magnetic field generated by SOC. Equilibrium spin currents are not associated with spin transport and accumulation, but they should nonetheless be carefully taken into account when computing transport spin currents. We provide quantitative estimates of equilibrium spin currents for several systems, specifically metallic surfaces presenting Rashba-like surface states, nitride semiconducting nanostructures and bulk materials, such as the prototypical gyrotropic medium tellurium. In doing so, we also point out the limitations of model approaches showing that first-principles calculations are needed to obtain reliable predictions. We therefore use Density Functional Theory computing the so-called bond currents, which represent a powerful tool to understand the relation between equilibrium currents, electronic structure and crystal point group.
A new measurement technique for the spin Seebeck effect is presented, wherein the normal metal layer used for its detection is exploited simultaneously as a resistive heater and thermometer. We show how the various contributions to the measured total signal can be disentangled, allowing to extract the voltage signal solely caused by the spin Seebeck effect. To this end we performed measurements as a function of the external magnetic field strength and its orientation. We find that the effect scales linearly with the induced rise in temperature, as expected for the spin Seebeck effect.
We investigate an interfacial spin-transfer torque and $beta$-term torque with alternating current (AC) parallel to a magnetic interface. We find that both torques are resonantly enhanced as the AC frequency approaches to the exchange splitting energ y. We show that this resonance allows us to estimate directly the interfacial exchange interaction strength from the domain wall motion. We also find that the $beta$-term includes an unconventional contribution which is proportional to the time derivative of the current and exists even in absence of any spin relaxation processes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا