ترغب بنشر مسار تعليمي؟ اضغط هنا

A Model of Interacting Dark Matter and Dark Radiation for $H_{0}$ and $sigma_{8}$ Tensions

53   0   0.0 ( 0 )
 نشر من قبل Gongjun Choi
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a model describing the dark sector (DS) featured by two interactions remaining efficient until late times in the matter-dominated era after recombination: the interaction among dark radiations (DR), and the interaction between a small fraction of dark matter and dark radiation. The dark sector consists of (1) a dominant component cold collisionless DM (DM1), (2) a sub-dominant cold DM (DM2) and (3) a self-interacting DR. When a sufficient amount of DR is ensured and a few percent of the total DM density is contributed by DM2 interacting with DR, this set-up is known to be able to resolve both the Hubble and $sigma_{8}$ tension. In light of this, we propose a scenario which is logically natural and has an intriguing theoretical structure with a hidden unbroken gauge group ${rm SU}(5)_{rm X}otimes {rm U}(1)_{rm X}$. Our model of the dark sector does not introduce any new scalar field, but contains only massless chiral fermions and gauge fields in the ultraviolet (UV) regime. As such, it introduces a new scale (DM2 mass, $m_{rm DM2}$) based on the confinement resulting from the strong dynamics of ${rm SU}(5)_{rm X}$. Both DM2-DR and DR-DR interactions are attributed to an identical long range interaction of ${rm U}(1)_{rm X}$. We show that our model can address the cosmological tensions when it is characterized by $g_{rm X}=mathcal{O}(10^{-3})-mathcal{O}(10^{-2})$, $m_{rm DM2}=mathcal{O}(1)-mathcal{O}(100){rm GeV}$ and $T_{rm DS}/T_{rm SM}simeq0.3-0.4$ where $g_{rm X}$ is the gauge coupling of ${rm U}(1)_{rm X}$ and $T_{rm DS}$ ($T_{rm SM}$) is a temperature of the DS (Standard Model sector). Our model explains candidates of DM2 and DR, and DM1 can be any kind of CDM.



قيم البحث

اقرأ أيضاً

We explore the feasibility and astrophysical consequences of a new long-range U(1) gauge field (dark electromagnetism) that couples only to dark matter, not to the Standard Model. The dark matter consists of an equal number of positive and negative c harges under the new force, but annihilations are suppressed if the dark matter mass is sufficiently high and the dark fine-structure constant $hatalpha$ is sufficiently small. The correct relic abundance can be obtained if the dark matter also couples to the conventional weak interactions, and we verify that this is consistent with particle-physics constraints. The primary limit on $hatalpha$ comes from the demand that the dark matter be effectively collisionless in galactic dynamics, which implies $hatalpha lesssim 10^{-4}$ for TeV-scale dark matter. These values are easily compatible with constraints from structure formation and primordial nucleosynthesis. We raise the prospect of interesting new plasma effects in dark matter dynamics, which remain to be explored.
We propose a new class of dark matter models with unusual phenomenology. What is ordinary about our models is that dark matter particles are WIMPs, they are weakly coupled to the Standard Model and have weak scale masses. What is unusual is that they come in multiplets of a new dark non-Abelian gauge group with milli-weak coupling. The massless dark gluons of this dark gauge group contribute to the energy density of the universe as a form of weakly self-interacting dark radiation. In this paper we explore the consequences of having i.) dark matter in multiplets ii.) self-interacting dark radiation and iii.) dark matter which is weakly coupled to dark radiation. We find that i.) dark matter cross sections are modified by multiplicity factors which have significant consequences for collider searches and indirect detection, ii.) dark gluons have thermal abundances which affect the CMB as dark radiation. Unlike additional massless neutrino species the dark gluons are interacting and have vanishing viscosity and iii.) the coupling of dark radiation to dark matter represents a new mechanism for damping the large scale structure power spectrum. A combination of additional radiation and slightly damped structure is interesting because it can remove tensions between global $Lambda$CDM fits from the CMB and direct measurements of the Hubble expansion rate ($H_0$) and large scale structure ($sigma_8$).
219 - Mayumi Aoki , Takashi Toma 2018
In models of multi-component dark matter, the lighter component of dark matter can be boosted by annihilations of the heavier state if mass splitting is large enough. Such relativistic dark matter can be detectable via large neutrino detectors such a s Super-Kamiokande and IceCube. Moreover, if the process is inelastic scattering and decay length of the produced particle is short enough, another signature coming from the decay can also be detectable. In this paper, we construct a simple two-component dark matter model with a hidden U(1)_D gauge symmetry where the lighter component of dark matter has a potential to improve the so-called small scale structure problems with large self-interacting cross section. We estimate number of multi-Cherenkov ring events due to both of the boosted dark matter and subsequent decay of the particle produced by inelastic scattering at Hyper-Kamiokande future experiment. Some relevant constraints, such as dark matter direct detection and cosmological observations, are also taken into account. The numerical analysis shows that some parameter space which can induce large self-interacting cross section can give a few multi-Cherenkov ring events per year at Hyper-Kamiokande.
We consider a simple class of models where dark radiation has self-interactions and therefore does not free stream. Such dark radiation has no anisotropic stress (or viscosity), leaving a distinct signature on the CMB angular power spectrum. Specific ally we study a possibility that hidden gauge bosons and/or chiral fermions account for the excess of the effective number of neutrino species. They have gauge interactions and remain light due to the unbroken hidden gauge symmetry, leading to Delta N_{rm eff} simeq 0.29 in some case.
We argue that dark radiation is naturally generated from the decay of the overall volume modulus in the LARGE volume scenario. We consider both sequestered and non-sequestered cases, and find that the axionic superpartner of the modulus is produced b y the modulus decay and it can account for the dark radiation suggested by observations, while the modulus decay through the Giudice-Masiero term gives the dominant contribution to the total decay rate. In the sequestered case, the lightest supersymmetric particles produced by the modulus decay can naturally account for the observed dark matter density. In the non-sequestered case, on the other hand, the supersymmetric particles are not produced by the modulus decay, since the soft masses are of order the heavy gravitino mass. The QCD axion will then be a plausible dark matter candidate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا