ترغب بنشر مسار تعليمي؟ اضغط هنا

Extremal graphs and classification of planar graphs by MC-numbers

83   0   0.0 ( 0 )
 نشر من قبل Xueliang Li
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

An edge-coloring of a connected graph $G$ is called a {em monochromatic connection coloring} (MC-coloring for short) if any two vertices of $G$ are connected by a monochromatic path in $G$. For a connected graph $G$, the {em monochromatic connection number} (MC-number for short) of $G$, denoted by $mc(G)$, is the maximum number of colors that ensure $G$ has a monochromatic connection coloring by using this number of colors. This concept was introduced by Caro and Yuster in 2011. They proved that $mc(G)leq m-n+k$ if $G$ is not a $k$-connected graph. In this paper we depict all graphs with $mc(G)=m-n+k+1$ and $mc(G)= m-n+k$ if $G$ is a $k$-connected but not $(k+1)$-connected graph. We also prove that $mc(G)leq m-n+4$ if $G$ is a planar graph, and classify all planar graphs by their monochromatic connectivity numbers.



قيم البحث

اقرأ أيضاً

Given a graph $H$, a graph is $H$-free if it does not contain $H$ as a subgraph. We continue to study the topic of extremal planar graphs, that is, how many edges can an $H$-free planar graph on $n$ vertices have? We define $ex_{_mathcal{P}}(n,H)$ to be the maximum number of edges in an $H$-free planar graph on $n $ vertices. We first obtain several sufficient conditions on $H$ which yield $ex_{_mathcal{P}}(n,H)=3n-6$ for all $nge |V(H)|$. We discover that the chromatic number of $H$ does not play a role, as in the celebrated ErdH{o}s-Stone Theorem. We then completely determine $ex_{_mathcal{P}}(n,H)$ when $H$ is a wheel or a star. Finally, we examine the case when $H$ is a $(t, r)$-fan, that is, $H$ is isomorphic to $K_1+tK_{r-1}$, where $tge2$ and $rge 3$ are integers. However, determining $ex_{_mathcal{P}}(n,H)$, when $H$ is a planar subcubic graph, remains wide open.
The Laplacian spread of a graph is the difference between the largest eigenvalue and the second-smallest eigenvalue of the Laplacian matrix of the graph. We find that the class of strongly regular graphs attains the maximum of largest eigenvalues, th e minimum of second-smallest eigenvalues of Laplacian matrices and hence the maximum of Laplacian spreads among all simple connected graphs of fixed order, minimum degree, maximum degree, minimum size of common neighbors of two adjacent vertices and minimum size of common neighbors of two nonadjacent vertices. Some other extremal graphs are also provided.
We show that families of action graphs, with initial graphs which are linear of varying length, give rise to self-convolutions of the Catalan sequence. We prove this result via a comparison with planar rooted forests with a fixed number of trees.
The fixing number of a graph $G$ is the smallest cardinality of a set of vertices $S$ such that only the trivial automorphism of $G$ fixes every vertex in $S$. The fixing set of a group $Gamma$ is the set of all fixing numbers of finite graphs with a utomorphism group $Gamma$. Several authors have studied the distinguishing number of a graph, the smallest number of labels needed to label $G$ so that the automorphism group of the labeled graph is trivial. The fixing number can be thought of as a variation of the distinguishing number in which every label may be used only once, and not every vertex need be labeled. We characterize the fixing sets of finite abelian groups, and investigate the fixing sets of symmetric groups.
We define three new pebbling parameters of a connected graph $G$, the $r$-, $g$-, and $u$-critical pebbling numbers. Together with the pebbling number, the optimal pebbling number, the number of vertices $n$ and the diameter $d$ of the graph, this yi elds 7 graph parameters. We determine the relationships between these parameters. We investigate properties of the $r$-critical pebbling number, and distinguish between greedy graphs, thrifty graphs, and graphs for which the $r$-critical pebbling number is $2^d$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا