ﻻ يوجد ملخص باللغة العربية
An edge-coloring of a connected graph $G$ is called a {em monochromatic connection coloring} (MC-coloring for short) if any two vertices of $G$ are connected by a monochromatic path in $G$. For a connected graph $G$, the {em monochromatic connection number} (MC-number for short) of $G$, denoted by $mc(G)$, is the maximum number of colors that ensure $G$ has a monochromatic connection coloring by using this number of colors. This concept was introduced by Caro and Yuster in 2011. They proved that $mc(G)leq m-n+k$ if $G$ is not a $k$-connected graph. In this paper we depict all graphs with $mc(G)=m-n+k+1$ and $mc(G)= m-n+k$ if $G$ is a $k$-connected but not $(k+1)$-connected graph. We also prove that $mc(G)leq m-n+4$ if $G$ is a planar graph, and classify all planar graphs by their monochromatic connectivity numbers.
Given a graph $H$, a graph is $H$-free if it does not contain $H$ as a subgraph. We continue to study the topic of extremal planar graphs, that is, how many edges can an $H$-free planar graph on $n$ vertices have? We define $ex_{_mathcal{P}}(n,H)$ to
The Laplacian spread of a graph is the difference between the largest eigenvalue and the second-smallest eigenvalue of the Laplacian matrix of the graph. We find that the class of strongly regular graphs attains the maximum of largest eigenvalues, th
We show that families of action graphs, with initial graphs which are linear of varying length, give rise to self-convolutions of the Catalan sequence. We prove this result via a comparison with planar rooted forests with a fixed number of trees.
The fixing number of a graph $G$ is the smallest cardinality of a set of vertices $S$ such that only the trivial automorphism of $G$ fixes every vertex in $S$. The fixing set of a group $Gamma$ is the set of all fixing numbers of finite graphs with a
We define three new pebbling parameters of a connected graph $G$, the $r$-, $g$-, and $u$-critical pebbling numbers. Together with the pebbling number, the optimal pebbling number, the number of vertices $n$ and the diameter $d$ of the graph, this yi