ترغب بنشر مسار تعليمي؟ اضغط هنا

Effect of spin fluctuations on superconductivity in V and Nb: a first-principles study

105   0   0.0 ( 0 )
 نشر من قبل Yuma Hizume
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the superconductivity in typical $d$-band elemental superconductors V and Nb with the recently developed non-empirical computational scheme based on the density functional theory for superconductors. The effect of ferromagnetic fluctuation (paramagnon) on the superconducting transition temperature ($T_{rm c}$), which in principle suppress the $s$-wave superconducting pairing, is quantified without any empirical parameter. We show that the strong paramagnon effect cancels the $T_{rm c}$-enhancing effects of the phonon-mediated pairing and dynamical screened Coulomb interaction.

قيم البحث

اقرأ أيضاً

A recent experiment reported the first rare-earth binary oxide superconductor LaO ($T_c $ $sim$ 5 K) with a rock-salt structure [K. Kaminaga et al., J. Am. Chem. Soc. 140, 6754 (2018)]. Correspondingly, the underlying superconducting mechanism in LaO needs theoretical elucidation. Based on first-principles calculations on the electronic structure, lattice dynamics, and electron-phonon coupling of LaO, we show that the superconducting pairing in LaO belongs to the conventional Bardeen-Cooper-Schrieffer (BCS) type. Remarkably, the electrons and phonons of the heavy La atoms, instead of those of the light O atoms, contribute most to the electron-phonon coupling. We further find that both the biaxial tensile strain and the pure electron doping can enhance the superconducting $T_c$ of LaO. With the synergistic effect of electron doping and tensile strain, the $T_c$ could be even higher, for example, 11.11 K at a doping of 0.2 electrons per formula unit and a tensile strain of $4%$. Moreover, our calculations show that the superconductivity in LaO thin film remains down to the trilayer thickness with a $T_c$ of 1.4 K.
The recent reports on 203 K superconductivity in compressed hydrogen sulfide, H$_3$S, has attracted great interest in sulfur-hydrogen system under high pressure. Here, we investigated the superconductivity of P-doped and Cl-doped H$_3$S using the fir st-principles calculations based on the supercell method, which gives more reliable results on the superconductivity in doped systems than the calculations based on the virtual crystal approximation reported earlier. The superconducting critical temperature is increased from 189 to 212 K at 200 GPa in a cubic $Imbar{3}m$ phase by the 6.25 % P doping, whereas it is decreased to 161 K by the 6.25 % Cl doping. Although the Cl doping weakens the superconductivity, it causes the $Imbar{3}m$ phase to be stabilized in a lower pressure region than that in the non-doped H$_3$S.
The structural, electronic, magnetic, and vibrational properties of LaFeSiH$_x$ for $x$ between 0 and 1 are investigated using density functional calculations. We find that the electronic and magnetic properties are strongly controlled by the hydroge n concentration $x$ in LaFeSiH$_x$. While fully hydrogenated LaFeSiH has a striped antiferromagnetic ground state, the underdoped LaFeSiH$_x$ for $xleq0.75$ is not magnetic within the virtual crystal approximation or with explicit doping of supercells. The antiferromagnetic configuration breaks the symmetry of Fe $d$ orbitals and increases electron-phonon coupling up to $50%$, especially for modes in the 20-50 meV range that are associated with Fe atomic movement. We find competing nearest and next-nearest neighbor exchange interactions and significant spin-phonon coupling, qualitatively similar but smaller in magnitude compared those found in LaOFeAs superconductors. The superconducting $T_c$ for antiferromagnetic LaFeSiH$_x$, assuming conventional superconductivity via McMillans equation, therefore is computed to be 2-10 K, in contrast to $T_capprox0$ for the nonmagnetic material. We also predict that the LaFeSiH$_x$ could be a good proton conductor due to phase stability with a wide range of hydrogen concentration $x < 1$.
We present an advanced method to study spin fluctuations in superconductors quantitatively, and entirely from first principles. This method can be generally applied to materials where electron-phonon coupling and spin fluctuations coexist. We employ it here to examine the recently synthesized superconductor iron tetraboride (FeB$_4$) with experimental $T_{mathrm{c}}sim 2.4$ K [H. Gou textit{et al.}, Phys. Rev. Lett. textbf{111}, 157002 (2013)]. We prove that FeB$_4$ is particularly prone to ferromagnetic spin fluctuations due to the presence of iron, resulting in a large Stoner interaction strength, $I=1.5$ eV, as calculated from first principles. The other important factor is its Fermi surface that consists of three separate sheets, among which two nested ellipsoids. The resulting susceptibility has a ferromagnetic peak around $textbf{q}=0$, from which we calculated the repulsive interaction between Cooper pair electrons using the random phase approximation. Subsequently, we combined the electron-phonon interaction calculated from first principles with the spin fluctuation interaction in fully anisotropic Eliashberg theory calculations. We show that the resulting superconducting gap spectrum is conventional, yet very strongly depleted due to coupling to the spin fluctuations. The critical temperature decreases from $T_{mathrm{c}}= 41$ K, if they are not taken into account, to $T_{mathrm{c}}= 1.7$ K, in good agreement with the experimental value.
We present the derivation of an ab-initio and parameter free effective electron-electron interaction that goes beyond the screened RPA and accounts for superconducting pairing driven by spin-fluctuations. The construction is based on many body pertur bation theory and relies on the approximation of the exchange-correlation part of the electronic self-energy within time dependent density functional theory. This effective interaction is included in an exchange correlation kernel for superconducting density functional theory, in order to achieve a completely parameter free superconducting gap equation. First results from applying the new functional to a simplified two-band electron gas model are consistent with experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا