ﻻ يوجد ملخص باللغة العربية
Quantum heat cycles and quantum refrigerators are analyzed using various quantum systems as their working mediums. For example, to evaluate the efficiency and the work done of the Carnot cycle in the quantum regime, one can consider the harmonic oscillator as its working medium. For all these well-defined working substances (which are analyzed in commutative space structure), the efficiency of the engine is not up to the mark of the Carnot efficiency. So, one inevitable question arise, can one observe a catalytic effect on the efficiency of the engines and refrigerators when the space structure is changed? In this paper, two different working substance in non-commutative spacetime with relativistic and generalized uncertainty principle corrections has been considered for the analysis of the efficiency of the heat engine cycles. The efficiency of the quantum heat engine gets a boost for higher values of the non-commutative parameter with a harmonic oscillator as the working substance. In the case of the second working medium (one-dimensional infinite potential well), the efficiency shows a constant result in the non-commutative space structure.
The Generalized Uncertainty Principle and the related minimum length are normally considered in non-relativistic Quantum Mechanics. Extending it to relativistic theories is important for having a Lorentz invariant minimum length and for testing the m
The non-relativistic quantum mechanics with a generalized uncertainty principle (GUP) is examined in $D$-dimensional free particle and harmonic oscillator systems. The Feynman propagators for these systems are exactly derived within the first order of the GUP parameter.
Quantum error correction and symmetry arise in many areas of physics, including many-body systems, metrology in the presence of noise, fault-tolerant computation, and holographic quantum gravity. Here we study the compatibility of these two important
Recent progress in observing and manipulating mechanical oscillators at quantum regime provides new opportunities of studying fundamental physics, for example, to search for low energy signatures of quantum gravity. For example, it was recently propo
We discuss classical electrodynamics and the Aharonov-Bohm effect in the presence of the minimal length. In the former we derive the classical equation of motion and the corresponding Lagrangian. In the latter we adopt the generalized uncertainty pri