ترغب بنشر مسار تعليمي؟ اضغط هنا

Simulation-based inference methods for particle physics

261   0   0.0 ( 0 )
 نشر من قبل Johann Brehmer Mr
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Our predictions for particle physics processes are realized in a chain of complex simulators. They allow us to generate high-fidelity simulated data, but they are not well-suited for inference on the theory parameters with observed data. We explain why the likelihood function of high-dimensional LHC data cannot be explicitly evaluated, why this matters for data analysis, and reframe what the field has traditionally done to circumvent this problem. We then review new simulation-based inference methods that let us directly analyze high-dimensional data by combining machine learning techniques and information from the simulator. Initial studies indicate that these techniques have the potential to substantially improve the precision of LHC measurements. Finally, we discuss probabilistic programming, an emerging paradigm that lets us extend inference to the latent process of the simulator.

قيم البحث

اقرأ أيضاً

The determination of the fundamental parameters of the Standard Model (and its extensions) is often limited by the presence of statistical and theoretical uncertainties. We present several models for the latter uncertainties (random, nuisance, extern al) in the frequentist framework, and we derive the corresponding $p$-values. In the case of the nuisance approach where theoretical uncertainties are modeled as biases, we highlight the important, but arbitrary, issue of the range of variation chosen for the bias parameters. We introduce the concept of adaptive $p$-value, which is obtained by adjusting the range of variation for the bias according to the significance considered, and which allows us to tackle metrology and exclusion tests with a single and well-defined unified tool, which exhibits interesting frequentist properties. We discuss how the determination of fundamental parameters is impacted by the model chosen for theoretical uncertainties, illustrating several issues with examples from quark flavour physics.
We reframe common tasks in jet physics in probabilistic terms, including jet reconstruction, Monte Carlo tuning, matrix element - parton shower matching for large jet multiplicity, and efficient event generation of jets in complex, signal-like region s of phase space. We also introduce Ginkgo, a simplified, generative model for jets, that facilitates research into these tasks with techniques from statistics, machine learning, and combinatorial optimization. We review some of the recent research in this direction that has been enabled with Ginkgo. We show how probabilistic programming can be used to efficiently sample the showering process, how a novel trellis algorithm can be used to efficiently marginalize over the enormous number of clustering histories for the same observed particles, and how dynamic programming, A* search, and reinforcement learning can be used to find the maximum likelihood clustering in this enormous search space. This work builds bridges with work in hierarchical clustering, statistics, combinatorial optmization, and reinforcement learning.
A new paradigm for data-driven, model-agnostic new physics searches at colliders is emerging, and aims to leverage recent breakthroughs in anomaly detection and machine learning. In order to develop and benchmark new anomaly detection methods within this framework, it is essential to have standard datasets. To this end, we have created the LHC Olympics 2020, a community challenge accompanied by a set of simulated collider events. Participants in these Olympics have developed their methods using an R&D dataset and then tested them on black boxes: datasets with an unknown anomaly (or not). This paper will review the LHC Olympics 2020 challenge, including an overview of the competition, a description of methods deployed in the competition, lessons learned from the experience, and implications for data analyses with future datasets as well as future colliders.
We propose a new scientific application of unsupervised learning techniques to boost our ability to search for new phenomena in data, by detecting discrepancies between two datasets. These could be, for example, a simulated standard-model background, and an observed dataset containing a potential hidden signal of New Physics. We build a statistical test upon a test statistic which measures deviations between two samples, using a Nearest Neighbors approach to estimate the local ratio of the density of points. The test is model-independent and non-parametric, requiring no knowledge of the shape of the underlying distributions, and it does not bin the data, thus retaining full information from the multidimensional feature space. As a proof-of-concept, we apply our method to synthetic Gaussian data, and to a simulated dark matter signal at the Large Hadron Collider. Even in the case where the background can not be simulated accurately enough to claim discovery, the technique is a powerful tool to identify regions of interest for further study.
We present MadFlow, a first general multi-purpose framework for Monte Carlo (MC) event simulation of particle physics processes designed to take full advantage of hardware accelerators, in particular, graphics processing units (GPUs). The automation process of generating all the required components for MC simulation of a generic physics process and its deployment on hardware accelerator is still a big challenge nowadays. In order to solve this challenge, we design a workflow and code library which provides to the user the possibility to simulate custom processes through the MadGraph5_aMC@NLO framework and a plugin for the generation and exporting of specialized code in a GPU-like format. The exported code includes analytic expressions for matrix elements and phase space. The simulation is performed using the VegasFlow and PDFFlow libraries which deploy automatically the full simulation on systems with different hardware acceleration capabilities, such as multi-threading CPU, single-GPU and multi-GPU setups. The package also provides an asynchronous unweighted events procedure to store simulation results. Crucially, although only Leading Order is automatized, the library provides all ingredients necessary to build full complex Monte Carlo simulators in a modern, extensible and maintainable way. We show simulation results at leading-order for multiple processes on different hardware configurations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا